نتایج جستجو برای: الگوریتم mcmc

تعداد نتایج: 27113  

Journal: :IEEE Access 2022

Autoencoders gained popularity in the deep learning revolution given their ability to compress data and provide dimensionality reduction. Although prominent methods have been used enhance autoencoders, need robust uncertainty quantification remains a challenge. This has addressed with variational autoencoders so far. Bayesian inference via Markov Chain Monte Carlo (MCMC) sampling faced several ...

2009
Matthew J. Heaton James G. Scott

This paper is a review of computational strategies for Bayesian shrinkage and variable selection in the linear model. Our focus is less on traditional MCMC methods, which are covered in depth by earlier review papers. Instead, we focus more on recent innovations in stochastic search and adaptive MCMC, along with some comparatively new research on shrinkage priors. One of our conclusions is that...

2004
A. Jasra D. A. Stephens

In the past ten years there has been a dramatic increase of interest in the Bayesian analysis of finite mixture models. This is primarily because of the emergence of Markov chain Monte Carlo (MCMC) methods. Whilst MCMC provides a convenient way to draw inference from complicated statistical models, there are many, perhaps under appreciated, problems associated with the MCMC analysis of mixtures...

1998
Petar M. Djuric Simon J. Godsill William J. Fitzgerald Peter J. W. Rayner

Markov Chain Monte Carlo (MCMC) samplers have been a very powerful methodology for estimating signal parameters. With the introduction of the reversible jump MCMC sampler, which is a Metropolis-Hastings method adapted to general state spaces, the potential of the MCMC methods has risen to a new level. Consequently, the MCMC methods currently play a major role in many research activities. In thi...

2012
Vinayak Rao Yee Whye Teh

We propose a simple and novel framework for MCMC inference in continuoustime discrete-state systems with pure jump trajectories. We construct an exact MCMC sampler for such systems by alternately sampling a random discretization of time given a trajectory of the system, and then a new trajectory given the discretization. The first step can be performed efficiently using properties of the Poisso...

2008
Jeffrey S. Rosenthal

We describe the importance and widespread use of Markov chain Monte Carlo (MCMC) algorithms, with an emphasis on the roles in which theoretical analysis can help with their practical implementation. In particular, we discuss how to achieve rigorous quantitative bounds on convergence to stationarity using the coupling method together with drift and minorisation conditions. We also discuss recent...

2008
Jeffrey S. Rosenthal

We review recent work concerning optimal proposal scalings for Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for trying to improve the algorithm on the fly.

Journal: :Psychological methods 2013
Brandon M Turner Per B Sederberg Scott D Brown Mark Steyvers

Bayesian estimation has played a pivotal role in the understanding of individual differences. However, for many models in psychology, Bayesian estimation of model parameters can be difficult. One reason for this difficulty is that conventional sampling algorithms, such as Markov chain Monte Carlo (MCMC), can be inefficient and impractical when little is known about the target distribution--part...

2007
Jee-Seon Kim

The purpose of this ITEMS module is to provide an introduction to Markov chain Monte Carlo (MCMC) estimation for item response models. A brief description of Bayesian inference is followed by an overview of the various facets of MCMC algorithms, including discussion of prior specification, sampling procedures, and methods for evaluating chain convergence. Model comparison and fit issues in the ...

2003
Madalina M. Drugan Dirk Thierens

Markov chain Monte Carlo (MCMC) is a popular class of algorithms to sample from a complex distribution. A key issue in the design of MCMC algorithms is to improve the proposal mechanism and the mixing behaviour. This has led some authors to propose the use of a population of MCMC chains, while others go even further by integrating techniques from evolutionary computation (EC) into the MCMC fram...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید