نتایج جستجو برای: wrky

تعداد نتایج: 847  

2013
Upendra K. S. Shekhawat Thumballi R. Ganapathi

WRKY transcription factors are specifically involved in the transcriptional reprogramming following incidence of abiotic or biotic stress on plants. We have previously documented a novel WRKY gene from banana, MusaWRKY71, which was inducible in response to a wide array of abiotic or biotic stress stimuli. The present work details the effects of MusaWRKY71 overexpression in transgenic banana pla...

2004
Franziska Turck Aifen Zhou Imre E. Somssich

WRKY transcription factors form a large family that plays a role in plant responses to biotic stress and during senescence. Defining in vivo relevant WRKY/promoter relationships has been hampered by the factors’ indiscriminate binding to known W box DNA elements and their possible genetic redundance. Employing chromatin immunoprecipitations (ChIP) of cultured cells, we show that parsley (Petros...

Journal: :The Plant cell 2004
Franziska Turck Aifen Zhou Imre E Somssich

WRKY transcription factors form a large family that plays a role in plant responses to biotic stress and during senescence. Defining in vivo relevant WRKY/promoter relationships has been hampered by the factors' indiscriminate binding to known W box DNA elements and their possible genetic redundance. Employing chromatin immunoprecipitations (ChIP) of cultured cells, we show that parsley (Petros...

Journal: :The Plant cell 2001
D Yu C Chen Z Chen

The Arabidopsis NPR1 gene is a positive regulator of inducible plant disease resistance. Expression of NPR1 is induced by pathogen infection or treatment with defense-inducing compounds such as salicylic acid (SA). Transgenic plants overexpressing NPR1 exhibit enhanced resistance to a broad spectrum of microbial pathogens, whereas plants underexpressing the gene are more susceptible to pathogen...

2007
Ming-Rui Duan Jie Nan Yu-He Liang Peng Mao Lu Lu Lanfen Li Chunhong Wei Luhua Lai Yi Li Xiao-Dong Su

WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signal...

2012
Sébastien Besseau Jing Li E. Tapio Palva

The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis...

2016
Muhammad Abuzar Jaffar Aiping Song Muhammad Faheem Sumei Chen Jiafu Jiang Chen Liu Qingqing Fan Fadi Chen

Drought is one of the important abiotic factors that adversely affects plant growth and production. The WRKY transcription factor plays a pivotal role in plant growth and development, as well as in the elevation of many abiotic stresses. Among three major groups of the WRKY family, the group IIe WRKY has been the least studied in floral crops. Here, we report functional aspects of group IIe WRK...

2017
Chao Zhang Dongdong Wang Chenghui Yang Nana Kong Zheng Shi Peng Zhao Yunyou Nan Tengkun Nie Ruoqiu Wang Haoli Ma Qin Chen

WRKY transcription factors play pivotal roles in regulation of stress responses. This study identified 79 WRKY genes in potato (Solanum tuberosum). Based on multiple sequence alignment and phylogenetic relationships, WRKY genes were classified into three major groups. The majority of WRKY genes belonged to Group II (52 StWRKYs), Group III had 14 and Group I consisted of 13. The phylogenetic tre...

2016
Yanchong Yu Nan Wang Ruibo Hu Fengning Xiang

Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classifi...

2016
Kamal Kumar Vikas Srivastava Savithri Purayannur V. Chandra Kaladhar Purnima Jaiswal Cheruvu Praveen Kumar Verma

The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید