نتایج جستجو برای: vertex pi polynomial
تعداد نتایج: 176159 فیلتر نتایج به سال:
The minimum vertex ranking spanning tree problem is to find a spanning tree of G whose vertex ranking is minimum. This problem is NP-hard and no polynomial time algorithm for solving it is known for non-trivial classes of graphs other than the class of interval graphs. This paper proposes a polynomial time algorithm for solving the minimum vertex ranking spanning tree problem on outerplanar gra...
The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...
Let $G$ be a finite group and $pi_{e}(G)$ be the set of orders of all elements in $G$. The set $pi_{e}(G)$ determines the prime graph (or Grunberg-Kegel graph) $Gamma(G)$ whose vertex set is $pi(G)$, the set of primes dividing the order of $G$, and two vertices $p$ and $q$ are adjacent if and only if $pqinpi_{e}(G)$. The degree $deg(p)$ of a vertex $pin pi(G)$, is the number of edges incident...
let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...
Directed s-t connectivity is the problem of detecting whether there is a path from vertex s to vertex t in a directed graph. We present the rst known deterministic sublinear space, polynomial time algorithm for directed s-t connectivity. For n-vertex graphs, our algorithm can use as little as n=2 ( p logn) space while still running in polynomial time.
let $g$ be a simple graph of order $n$ and size $m$.the edge covering of $g$ is a set of edges such that every vertex of $g$ is incident to at least one edge of the set. the edge cover polynomial of $g$ is the polynomial$e(g,x)=sum_{i=rho(g)}^{m} e(g,i) x^{i}$,where $e(g,i)$ is the number of edge coverings of $g$ of size $i$, and$rho(g)$ is the edge covering number of $g$. in this paper we stud...
Formulas for the Wiener number and the Hosoya-Wiener polynomial of edge and vertex weighted graphs are given in terms of edge and path contributions. For a rooted tree, the Hosoya-Wiener polynomial is expressed as a sum of vertex contributions. Finally, a recursive formula for computing the Hosoya-Wiener polynomial of a weighted tree is given.
Let $G$ be a finite group and $pi(G)$ be the set of all the prime divisors of $|G|$. The prime graph of $G$ is a simple graph $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct vertices $p$ and $q$ are joined by an edge if and only if $G$ has an element of order $pq$, and in this case we will write $psim q$. The degree of $p$ is the number of vertices adjacent to $p$ and is ...
let $g$ be a finite group and $pi(g)$ be the set of all the prime divisors of $|g|$. the prime graph of $g$ is a simple graph $gamma(g)$ whose vertex set is $pi(g)$ and two distinct vertices $p$ and $q$ are joined by an edge if and only if $g$ has an element of order $pq$, and in this case we will write $psim q$. the degree of $p$ is the number of vertices adjacent to $p$ and is ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید