نتایج جستجو برای: vacuole

تعداد نتایج: 10788  

Journal: :The Journal of Cell Biology 2003
Kuniko Ishikawa Natalie L. Catlett Jennifer L. Novak Fusheng Tang Johnathan J. Nau Lois S. Weisman

Class V myosins are widely distributed among diverse organisms and move cargo along actin filaments. Some myosin Vs move multiple types of cargo, where the timing of movement and the destinations of selected cargoes are unique. Here, we report the discovery of an organelle-specific myosin V receptor. Vac17p, a novel protein, is a component of the vacuole-specific receptor for Myo2p, a Saccharom...

Journal: :Eukaryotic cell 2009
Clinton R Bartholomew Christopher F J Hardy

Each time Saccharomyces cerevisiae cells divide they ensure that both the mother and daughter cell inherit a vacuole by actively transporting a portion of the vacuole into the bud. As the mother cell begins budding, a tubular and vesicular segregation structure forms that is transported into the bud by the myosin V motor Myo2, which is bound to the vacuole-specific myosin receptor, Vac17 (41, 5...

Journal: :Journal of cell science 1993
Q Zhu T Liu M Clarke

In amoebae of the eukaryotic microorganism Dictyostelium discoideum, calmodulin is greatly enriched on membranes of the contractile vacuole complex, an osmoregulatory organelle. Antibodies specific for Dictyostelium calmodulin were used in the present study to immunolocalize the contractile vacuole complex in relation to the Golgi complex (detected with wheat germ agglutinin) and the microtubul...

Journal: :The Biochemical journal 2012
Terry L Sasser Mark Padolina Rutilio A Fratti

Ybt1p is a class C ABC transporter (ATP-binding cassette transporter) that is localized to the vacuole of Saccharomyces cerevisiae. Although Ybt1p was originally identified as a bile acid transporter, it has also been found to function in other capacities, including the translocation of phosphatidylcholine to the vacuole lumen, and the regulation of Ca2+ homoeostasis. In the present study we fo...

2014
Ivan Kulich Viktor Žárský

Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER) to vacuole (and also, apoplast) transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocys...

Journal: :Journal of cell science 2006
Kanagaraj Subramanian Lars E P Dietrich Haitong Hou Tracy J LaGrassa Christoph T A Meiringer Christian Ungermann

Palmitoylation stably anchors specific proteins to membranes, but may also have a direct effect on the function of a protein. The yeast protein Vac8 is required for efficient vacuole fusion, inheritance and cytosol-to-vacuole trafficking. It is anchored to vacuoles by an N-terminal myristoylation site and three palmitoylation sites, also known as the SH4 domain. Here, we address the role of Vac...

2013
Christian Hacker Matthew Howell David Bhella John Lucocq

Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host-derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole-host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial pro...

Journal: :Current Biology 2003
Fanny S. Chang Christopher J. Stefan Kendall J. Blumer

BACKGROUND WASp/SCAR proteins activate the Arp2/3 complex to nucleate actin filament assembly and are thought to have important roles in endocytosis. WASp is required for efficient endocytosis of antigen receptors, N-WASp promotes actin polymerization-dependent movement of endomembrane vesicles, and Las17 (a yeast WASp homolog) is required for endocytic internalization. However, it is unknown w...

Journal: :Journal of cell science 1998
C L Campbell P E Thorsness

Inactivation of Yme1p, a mitochondrially-localized ATP-dependent metallo-protease in the yeast Saccharomyces cerevisiae, causes a high rate of DNA escape from mitochondria to the nucleus as well as pleiotropic functional and morphological mitochondrial defects. The evidence presented here suggests that the abnormal mitochondria of a yme1 strain are degraded by the vacuole. First, electron micro...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید