نتایج جستجو برای: upper domatic number
تعداد نتایج: 1344288 فیلتر نتایج به سال:
We resolve the problem posed as the main open question in [4]: letting δ(G), ∆(G) and D(G) respectively denote the minimum degree, maximum degree, and domatic number (defined below) of an undirected graph G = (V,E), we show that D(G) ≥ (1−o(1))δ(G)/ ln(∆(G)), where the “o(1)” term goes to zero as ∆(G) → ∞. A dominating set of G is any set S ⊆ V such that for all v ∈ V , either v ∈ S or some nei...
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...
Using a dominating set as a coordinator in wireless networks has been proposed in many papers as an energy conservation technique. Since the nodes in a dominating set have the extra burden of coordination, energy resources in such nodes will drain out more quickly than in other nodes. To maximize the lifetime of nodes in the network, it has been proposed that the role of coordinators be rotated...
Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ k for each x ∈ V (G), ...
The chromatic number χ(G) of a graph G is the minimum number of colours required to colour the vertices of G in such a way that no two adjacent vertices of G receive the same colour. A partition of V into χ(G) independent sets (called colour classes) is said to be a χpartition of G. A set S ⊆ V is called a dominating set of G if every vertex in V − S is adjacent to a vertex in S. A dominating s...
iii Acknowledgments I want to thank my thesis advisor Jörg Rothe for all of his support during the past four years. In the first place, I am deeply grateful to him for giving me the chance to be part of his research team. Without his great efforts, I would never have had the chance to work in the scientific community. Many inspiring and valuable discussions with him initiated fruitful ideas tha...
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function f : E(G) −→ {±1,±2, . . . ,±k} is said to be a signed star {k}-dominating function on G if ∑ e∈E(v) f(e) ≥ k for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. The signed star {k}-domination number of a graph G is γ{k}SS(G) = min{ ∑ e∈E f(e) | f is a S...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید