The problem of downward continuation of the gravity field from the Earth’s surface to the reference ellipsoid arises from the fact that the solution to the boundary value problem for geoid determination without applying Stokes formula is sought in terms of the disturbing potential on the ellipsoid but the gravity observations are only available on the Earth’s surface. Downward continuation is a...
Journal:
:Archive for Rational Mechanics and Analysis2021
Without any smallness assumption, we prove the global unique solvability of 2-D incompressible inhomogeneous Navier-Stokes equations with initial data in critical Besov space, which is almost energy space sense that they have same scaling terms this system.
The one-dimensional matrix Schrr odinger equation is considered when the matrix potential is selfadjoint and satisses certain general restrictions. The small-energy asymptotics of the scattering solutions and scattering coeecients are derived. The continuity of the scattering coeecients is established. The unique solvability of the corresponding matrix Marchenko integral equations is proved. Sh...
The unique solvability of parabolic equations in Sobolev spaces with mixed norms is presented. The second order coefficients (except a) are assumed to be only measurable in time and one spatial variable, and VMO in the other spatial variables. The coefficient a is measurable in one spatial variable and VMO in the other variables.
New general unique solvability conditions of the Cauchy problem for systems of general linear functional differential equations are established. The class of equations considered covers, in particular, linear equations with transformed argument, integro-differential equations, neutral type equations and their systems of an arbitrary order.
The aim of the paper is to find efficient conditions for the unique solvability of the problem u′(t) = `(u)(t) + q(t), u(a) = h(u) + c, where ` : C([a, b];R) → L([a, b];R) and h : C([a, b];R) → R are linear bounded operators, q ∈ L([a, b];R), and c ∈ R.
We propose a finite difference scheme for the Heisenberg equation and the LandauLifshitz equation. These equations have a length-preserving property and energy conservation or dissipation property. Our proposed scheme inherits both characteristic properties. We also show that the boundedness of finite difference solutions and an unique solvability of our scheme. Finally, we show some numerical ...
We consider the problem of determining the unknown term in the right-hand side of a second-order differential equation with unbounded operator generating a cosine operator function from the overspecified boundary data. We obtain necessary and sufficient conditions of the unique solvability of this problem in terms of location of the spectrum of the unbounded operator and properties of its resol...
We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.