نتایج جستجو برای: type inequality

تعداد نتایج: 1392496  

2007
Zheng Liu

Using a variant of Grüss inequality, to give a new proof of a well known result on Ostrowski-Grüss type inequalities and sharpness of this inequality is obtained. Moreover, a new general sharp Ostrowski-Grüss type inequality is given.

We firstly establish an identity for $n$ time differentiable mappings Then, a new inequality for $n$ times differentiable functions is deduced. Finally, some perturbed Ostrowski type inequalities for functions whose $n$th derivatives are of bounded variation are obtained.

2017
Mohammad Sal Moslehian Ritsuo Nakamoto Yuki Seo MOHAMMAD SAL MOSLEHIAN RITSUO NAKAMOTO YUKI SEO

We present a Diaz–Metcalf type operator inequality as a reverse Cauchy–Schwarz inequality and then apply it to get some operator versions of Pólya–Szegö’s, Greub–Rheinboldt’s, Kantorovich’s, Shisha–Mond’s, Schweitzer’s, Cassels’ and Klamkin–McLenaghan’s inequalities via a unified approach. We also give some operator Grüss type inequalities and an operator Ozeki– Izumino–Mori–Seo type inequality...

2011
MOHAMMAD SAL MOSLEHIAN YUKI SEO

We present a Diaz–Metcalf type operator inequality as a reverse Cauchy–Schwarz inequality and then apply it to get some operator versions of Pólya–Szegö’s, Greub–Rheinboldt’s, Kantorovich’s, Shisha–Mond’s, Schweitzer’s, Cassels’ and Klamkin–McLenaghan’s inequalities via a unified approach. We also give some operator Grüss type inequalities and an operator Ozeki– Izumino–Mori–Seo type inequality...

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

 ‎In this paper we study the existence of nontrivial‎ solutions for a variational inequality on the half-line‎. ‎Our‎ ‎approach is based on the non-smooth critical point theory‎ ‎for Szulkin-type functionals.

2007
Ling Zhu Laszlo I. Losonczi

2014
RONG AN YUAN LI

The two-level penalty finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions are investigated in this paper, whose variational formulation is the Navier-Stokes type variational inequality problem of the second kind. The basic idea is to solve the Navier-Stokes type variational inequality problem on a coarse mesh with mesh size H in combining with solving a St...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید