نتایج جستجو برای: subtractive clustering

تعداد نتایج: 105490  

2017
Dilip Singh Sisodia Shrish Verma

In this paper, a subtractive relational fuzzy c-medoids clustering approach is discussed to identify web user session clusters from weblogs, based on their browsing behavior. In this approach, the internal arrangement of data along with the density of pairwise dissimilarity values is favored over arbitrary starting estimations of medoids as done in the conventional relational fuzzy c-medoids al...

Journal: :Soft Comput. 2010
Mohammed T. Hayajneh Adel Mahmood Hassan Fatma Al-Wedyan

In this paper, a subtractive clustering fuzzy identification method and a Sugeno-type fuzzy inference system are used to monitor tile defects in tile manufacturing process. The models for the tile defects are identified by using the firing mechanical resistance, water absorption, shrinkage, tile thickness, dry mechanical resistance and tiles temperature as input data, and using the concavity de...

2016
A. R. Jasmine Begum Abdul Razak

Fuzzy C-means clustering (FCM) is an important technique used in cluster analysis. The standard FCM algorithm calls the centroids to be randomly initialized resulting in the requirement of making estimations from expert users to determine the number of clusters. To overcome these observed limitations of applying the FCM algorithm, an efficient image segmentation model, Hybrid Fuzzy C-means Algo...

2006
Seema Chopra Ranajit Mitra Vijay Kumar

Fuzzy controller’s design depends mainly on the rule base and membership functions over the controller’s input and output ranges. This paper presents two different approaches to deal with these design issues. A simple and efficient approach; namely, Fuzzy Subtractive Clustering is used to identify the rule base needed to realize Fuzzy PI and PD type controllers. This technique provides a mechan...

2011
Fabrizio Smeraldi Manuele Bicego Marco Cristani Vittorio Murino

We present a novel clustering approach, that exploits boosting as the primary means of modelling clusters. Typically, boosting is applied in a supervised classification context; here, we move in the less explored unsupervised scenario. Starting from an initial partition, clusters are iteratively re-estimated using the responses of one-vs-all boosted classifiers. Within-cluster homogeneity and s...

2007
Marta Marrón Romera Miguel Ángel Sotelo Juan Carlos García García

A partitional and a fuzzy clustering algorithm are compared in this paper in terms of accuracy, robustness and efficiency. 3D position data extracted from a stereo-vision system have to be clustered to use them in a tracking application in which a particle filter is the kernel of the estimation task. ‘K-Means’ and ‘Subtractive’ algorithms have been modified and enriched with a validation proces...

Journal: :نشریه بین المللی چند تخصصی سرطان 0
alireza atashi najmeh nazeri ebrahim abbasi sara dorri mohsen alijani_z

introduction: the adaptive neuro-fuzzy inference system (anfis) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. in this study we used this model in breast cancer detection. methodology: a set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  first, the risk fact...

2009
Yuanfeng Gao

This project consists of two parts. The first part is a general review of the previous and current research on human face recognition, including initial motivation, approaches, major problems and solutions, etc. The second part propose a new method for learning of radial basis function (RBF) neural networks which is based on subtractive clustering algorithm(SCA) and its application to face reco...

Journal: :journal of advances in computer research 0
masoumeh pourhasan department of computer engineering, faculty of engineering, chalous branch, islamic azad university, chalous, mazandaran, iran abbas karimi department of computer engineering, faculty of engineering, arak branch, islamic azad university, arak, markazi, iran

some applications are critical and must designed fault tolerant system. usually voting algorithm is one of the principle elements of a fault tolerant system. two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. majority confronts with the problem of threshold limits and voter of weight...

2012
Thanh Le Tom Altman Katheleen J. Gardiner

 Clustering is a challenging problem in data mining, requiring both accurate determination of the number of clusters and correct clustering of the data. Fuzzy C-means (FCM) is a popular algorithm using the partitioning approach to solve this problem. A drawback to FCM is that it requires the number of clusters to be set a priori. In this study, we combine FCM with Genetic Algorithm (GA), Subtr...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید