نتایج جستجو برای: strongly duo modules
تعداد نتایج: 276687 فیلتر نتایج به سال:
Let $R$ be a domain with quotiont field $K$, and let $N$ be a submodule of an $R$-module $M$. We say that $N$ is powerful (strongly primary) if $x,yin K$ and $xyMsubseteq N$, then $xin R$ or $yin R$ ($xMsubseteq N$ or $y^nMsubseteq N$ for some $ngeq1$). We show that a submodule with either of these properties is comparable to every prime submodule of $M$, also we show tha...
We enrich the setting of strongly stable ideals (SSI): introduce shift modules, a module category encompassing SSIs. The recently introduced duality on SSIs is given an effective conceptual and computational setting. study in infinite dimensional polynomial rings, where most natural. Finally new type resolution for introduced. This projective modules.
Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this paper, we will introduce the notions of 2-absorbing $I$-prime and 2-absorbing $I$-second submodules of an $R$-module $M$ as a generalization of 2-absorbing and strongly 2-absorbing second submodules of $M$ and explore some basic properties of these classes of modules.
Let be a ring with identity. Recall that submodule of left -module is called strongly essential if for any nonzero subset , there such i.e., . This paper introduces class submodules se-closed, where se-closed it has no proper extensions inside We show by an example the intersection two may not se-closed. say module have se-Closed Intersection Property, briefly se-CIP, every again in Several cha...
let $r$ be an arbitrary ring with identity and $m$ a right $r$-module with $s=$ end$_r(m)$. the module $m$ is called {it rickart} if for any $fin s$, $r_m(f)=se$ for some $e^2=ein s$. we prove that some results of principally projective rings and baer modules can be extended to rickart modules for this general settings.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید