Let $a_1, \ldots, a_n \in \mathbb{R}$ satisfy $\sum_i a_i^2 = 1$, and let $\varepsilon_1, \varepsilon_n$ be uniformly random $\pm 1$ signs $X \sum_{i=1}^{n} a_i \varepsilon_i$. It is conjectured that \varepsilon_i$ has $\Pr[X \geq 1] 7/64$. The best lower bound so far $1/20$, due to Oleszkiewicz. In this paper we improve 6/64$.