نتایج جستجو برای: serre subcategories
تعداد نتایج: 4049 فیلتر نتایج به سال:
We introduce a new moduli stack, called the Serre stable moduli stack, which corresponds to studying families of point objects in an abelian category with a Serre functor. This allows us in particular, to re-interpret the classical derived equivalence between most concealed-canonical algebras and weighted projective lines by showing they are induced by the universal sheaf on the Serre stable mo...
The Serre or Green and Naghdi equations are fully-nonlinear and weakly dispersive and have a built-in assumption of irrotationality. However, like the standard Boussinesq equations, also Serre’s equations are only valid for long waves in shallow waters. To allow applications in a greater range of h0/l, where h0 and l represent, respectively, depth and wavelength characteristics, a new set of ex...
Suppose X is a smooth projective scheme of finite type over a field K, E is a locally free OX -bimodule of rank 2, A is the non-commutative symmetric algebra generated by E and ProjA is the corresponding non-commutative P -bundle. We use the properties of the internal Hom functor HomGrA(−,−) to prove versions of Serre finiteness and Serre vanishing for ProjA. As a corollary to Serre finiteness,...
In this paper we classify noetherian hereditary abelian categories satisfying Serre duality in the sense of Bondal and Kapranov. As a consequence we obtain a classification of saturated noetherian hereditary categories. As a side result we show that when our hereditary categories have no nonzero projectives or injectives, then the Serre duality property is equivalent to the existence of almost ...
We carefully develop the theory of Serre duality and dualizing sheaves. We differ from the approach in [12] in that the use of spectral sequences and the Yoneda pairing are emphasized to put the proofs in a more systematic framework. As applications of the theory, we discuss the RiemannRoch theorem for curves and Bott’s theorem in representation theory (following [8]) using the algebraic-geomet...
in addition to exploring constructions and properties of limits and colimits in categories of topologicalalgebras, we study special subcategories of topological algebras and their properties. in particular, undercertain conditions, reflective subcategories when paired with topological structures give rise to reflectivesubcategories and epireflective subcategories give rise to epireflective subc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید