نتایج جستجو برای: sequential forward feature selection
تعداد نتایج: 714124 فیلتر نتایج به سال:
This paper presents a novel feature selection approach to deal with issues of high dimensionality in biomedical data classification. Extensive research has been performed in the field of pattern recognition and machine learning. Dozens of feature selection methods have been developed in the literature, which can be classified into three main categories: filter, wrapper and hybrid approaches. Fi...
In this paper a feature selection algorithm CSSFFS (Constrained search sequential floating forward search) based on SVM is proposed for detecting breast cancer. It is a greedy algorithm with search strategy of constrained search. The aim of this algorithm is to achieve a feature subset with minimal BER (Balanced error rate). This is a hybrid algorithm with the combination of filters and wrapper...
This paper describes feature vector indexing, a new, nonperfect indexing method for clause subsumption. It is suitable for both forward (i.e., finding a subsuming clause in a set) and backward (finding all subsumed clauses in a set) subsumption. Moreover, it is easy to implement, but still yields excellent performance in practice. As an added benefit, by restricting the selection of features us...
In this paper we describe feature selection experiments for on-line handwriting recognition. We performed a sequential forward search through a 25 elements set of on-line and pseudo-off-line features. In our experiments we obtained interesting results. Using a set of only five features, we achieved a performance that is similar that of the reference system that uses all features. The best subse...
Feature selection is always an important and difficult issue in pattern recognition, machine learning and data mining. In this paper, a novel approach called resemblance coefficient feature selection (RCFS) is proposed. Definition, properties of resemblance coefficient (RC) and the evaluation criterion of the optimal feature subset are given firstly. Feature selection algorithm using RC criteri...
Pattern recognition generally requires that objects be described in terms of a set of measurable features. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, inc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید