نتایج جستجو برای: runx2
تعداد نتایج: 2482 فیلتر نتایج به سال:
Members of the Runx family of transcription factors play essential roles in the differentiation and development of several organ systems. Here we address the contribution of the osteoblast-related Runx gene Runx2 to the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Using a transgenic mouse model, we observe Runx2 transcription through one of its two known promoters (des...
Runx2 is a metastatic transcription factor (TF) increasingly expressed during prostate cancer (PCa) progression. Using PCa cells conditionally expressing Runx2, we previously identified Runx2-regulated genes with known roles in epithelial-mesenchymal transition, invasiveness, angiogenesis, extracellular matrix proteolysis and osteolysis. To map Runx2-occupied regions (R2ORs) in PCa cells, we fi...
The core-binding factor (CBF) is a master regulator of developmental and differentiation programs, and CBF alterations are frequently associated with acute leukemia. The role of the CBF member RUNX2 in hematopoiesis is poorly understood. Genetic evidence suggests that deregulation of Runx2 may cause myeloid leukemia in mice expressing the fusion oncogene Cbfb-MYH11. In this study, we show that ...
The RUNX2 transcription factor promotes breast cancer growth and metastasis through interactions with a variety of cofactors that activate or repress target genes. Using a direct drug discovery approach we identified CADD522 as a small molecule that inhibits the DNA binding of the runt box domain protein, RUNX2. The current study defines the effect of CADD522 on breast cancer growth and metasta...
Fibroblast growth factor 2 (FGF2) signaling plays a pivotal role in bone growth/differentiation through the activation of osteogenic master transcription factor Runx2, which is mediated by the ERK/MAPK-dependent phosphorylation and the p300-dependent acetylation of Runx2. In this study, we found that Pin1-dependent isomerization of Runx2 is the critical step for FGF2-induced Runx2 transactivati...
Changes to androgen signaling during prostate carcinogenesis are associated with both inhibition of cellular differentiation and promotion of malignant phenotypes. The androgen receptor (AR)-binding transcription factor RUNX2 has been linked to prostate cancer progression but the underlying mechanisms have not been fully defined. In this study, we investigated the genome-wide influence of RUNX2...
The Runx2 (CBFA1/AML3/PEBP2alphaA) transcription factor promotes skeletal cell differentiation, but it also has a novel cell growth regulatory activity in osteoblasts. We addressed here whether Runx2 activity is functionally linked to cell cycle-related mechanisms that control normal osteoblast proliferation and differentiation. We found that the levels of Runx2 gene transcription, mRNA and pro...
Cleidocranial dysplasia (CCD) is an autosomal dominant inheritable skeletal disorder characterized by cranial dysplasia, clavicle hypoplasia and dental abnormalities. This disease is mainly caused by heterozygous mutations in RUNX2, a gene that encodes an osteoblast-specific transcription factor. In the present study, mutational analyses of RUNX2 gene were performed on four unrelated Chinese pa...
Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) is an autosomal-dominant bone dysplasia characterized by metaphyseal flaring of long bones, enlargement of the medial halves of the clavicles, maxillary hypoplasia, variable brachydactyly, and dystrophic teeth. We performed genome-wide SNP genotyping in five affected and four unaffected members of an extended family with ...
RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell line...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید