We consider a closed manifold M with a Riemannian metric gij(t) evolving by ∂t gij = −2Sij where Sij(t) is a symmetric two-tensor on (M, g(t)). We prove that if Sij satisfies the tensor inequality D(Sij , X) ≥ 0 for all vector fields X on M , where D(Sij , X) is defined in (1.6), then one can construct a forwards and a backwards reduced volume quantity, the former being non-increasing, the latt...