نتایج جستجو برای: restrained roman dominating function

تعداد نتایج: 1239824  

2009
Nasrin Soltankhah N. Soltankhah

A set S of vertices in a graph G(V,E) is called a total dominating set if every vertex v ∈ V is adjacent to an element of S. A set S of vertices in a graph G(V,E) is called a total restrained dominating set if every vertex v ∈ V is adjacent to an element of S and every vertex of V − S is adjacent to a vertex in V − S. The total domination number of a graph G denoted by γt(G) is the minimum card...

2008
Johannes H. Hattingh R. Plummer

Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex in V is adjacent to a vertex in S and every vertex of V −S is adjacent to a vertex in V −S. The total restrained domination number of G, denoted by γtr(G), is the minimum cardinality of a total restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We sho...

Journal: :Discussiones Mathematicae Graph Theory 2009
Johannes H. Hattingh Ernst J. Joubert Marc Loizeaux Andrew R. Plummer Lucas C. van der Merwe

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, th...

Journal: :Ars Comb. 2010
Johannes H. Hattingh Andrew R. Plummer

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. It is known that if T is a tree of order n, then γr(T ) ≥ d(n+2)/3e. In this note we provide a simple constructive characteriz...

Journal: :Graphs and Combinatorics 2013
Khee Meng Koh Zeinab Maleki Behnaz Omoomi

Let G be a graph with vertex set V . A set D ⊆ V is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in V \D has a neighbor in V \D. The minimum cardinality of a total restrained dominating set of G is called the total restrained domination number of G, and is denoted by γtr(G). In this paper, we prove that if G is a connected graph of order n ≥ 4...

Journal: :transactions on combinatorics 2014
maryam atapour sepideh norouzian seyed mahmoud sheikholeslami

a function $f:v(g)rightarrow {-1,0,1}$ is a {em minusdominating function} if for every vertex $vin v(g)$, $sum_{uinn[v]}f(u)ge 1$. a minus dominating function $f$ of $g$ is calleda {em global minus dominating function} if $f$ is also a minusdominating function of the complement $overline{g}$ of $g$. the{em global minus domination number} $gamma_{g}^-(g)$ of $g$ isdefined as $gamma_{g}^-(g)=min{...

‎‎Let $G=(V‎, ‎E)$ be a simple graph with vertex set $V$ and edge set $E$‎. ‎A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacent‎‎or incident to at least one element $yin Vcup E$ for which $f(y)=2$‎. ‎The weight of an‎‎MRDF $f$ is $sum _{xin Vcup E} f(x)$‎. ‎The mi...

2010
Mustapha Chellali Odile Favaron

In a graph G = (V,E) a vertex is said to dominate itself and all its neighbours. A weak dominating set is a set S ⊆ V where for every vertex u not in S there is a vertex v of S adjacent to u with dG(v) 6 dG(u) . A restrained dominating set is a set S ⊆ V where every vertex in V − S is adjacent to a vertex in S as well as another vertex in V − S . The weak domination number γw(G) (resp. restrain...

Journal: :Discrete Mathematics 2008
Johannes H. Hattingh Andrew R. Plummer

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. We define the restrained bondage number br(G) of a nonempty graph G to be the minimum cardinality among all sets of edges E′ ⊆...

For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$‎, ‎we define a‎ ‎function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating‎ ‎function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least‎ ‎$k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$‎. ‎The minimum weight of a Roman $k$-tuple dominatin...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید