نتایج جستجو برای: resistance to i 131 therapy
تعداد نتایج: 11251683 فیلتر نتایج به سال:
We demonstrate the use of combination therapy to overcome the limitations of cancer DNA vaccines by adding radioiodine gene therapy in an animal cancer model. We established a stable cell line (CT26/hMUC1-hNIS-Fluc: CMNF) expressing the hMUC1, hNIS and Fluc genes using a retro- and lentivirus system. The survival rates (%) of CMNF cells were determined using clonogenic assays after (131)I treat...
OBJECTIVE To evaluate changes of nuclear factor-kappa B (NF-κB) during radioiodine 131 ((131)I) therapy and whether NF-κB inhibition could enhance (131)I-induced apoptosis in differentiated thyroid cancer (DTC) cells in a synergistic manner. METHODS Three human DTC cell lines were used. NF-κB inhibition was achieved by using a NF-κB inhibitor (Bay 11-7082) or by p65 siRNA transfection. Methyl...
UNLABELLED The risk of cataracts after (131)I therapy for cancer is unknown. The objective of this study was to evaluate the association between (131)I therapy for thyroid cancer and risk of receiving cataract surgery in Taiwan. METHODS This was a nationwide population-based cohort study of patients with thyroid cancer diagnosed during the period 1998-2008. The data were obtained from the Tai...
Introduction: The present study was aimed to assess the diagnostic performance of the two imaging methods of 131I-metaiodobenzylguanidine (131I-MIBG) and 99mTc-hydrazinonicotinyl-Tyr3-Octreotide (99mTc-HYNIC-TOC) in diagnosis and localization of pheochromocytoma and neuroblastoma. Methods: This study ...
In routine use for more than 50 years, radioiodine ((131)I) is generally considered safe and devoid of major side effects. Therefore, it is surprising that relatively many aspects of radioiodine therapy are controversial, as illustrated by recent international questionnaire studies. Our review aims at highlighting three of these areas - namely, the influence of (131)I on the course of Graves' o...
In the management of large number of patients with differentiated thyroid cancer, the radioactive iodine (131-I) administration plays an important role. The guidelines of numerous international and national medical societies regarding the issue of postoperative 131-I administration have been published and updated in the last few years. The guidelines differ in the shape and content, and contain...
INTRODUCTION Radioactive iodine has been used for more than 50 years for the treatment of thyroid diseases. Differentiated thyroid cancers have the ability to trap iodine. Therefore, radioiodine can be used both diagnostically and therapeutically. In the follow-up of patients, it is critical to interpret radioiodine scans correctly. CASE PRESENTATION Non-physiological Iodine-131 (I-131) extra...
I131 is a famous radio-iodine isotope in use for diagnosis and treatment of hyper functioning and cancerous thyroid gland. It is a nuclear reactor product; however nuclear reactor may be unavailable in some areas. Replacement by I-124 may be possible, another iodine isotope producible by cyclotron; a system more available than reactor. Here absorbed fraction of Gamma and Beta rays of...
Radioiodine is a routine therapy for differentiated thyroid cancers. Non-thyroid cancers may be treated with radio-iodine following transfection with the human sodium/iodide symporter (hNIS) gene. The glial fibrillary acidic protein (GFAP) promoter is an effective tumor-specific promoter for gene expression and thus may be useful in targeted gene therapy of malignant glioma. The present study u...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید