نتایج جستجو برای: relevance vector regression
تعداد نتایج: 625475 فیلتر نتایج به سال:
انتقال رسوب و رسوبگذاری، پـیآمـدهایی چـون ایجـاد جزایـر رسـوبی در مـسیر رودخانه و در نتیجه کاهش ظرفیت انتقال جریانهای سی?بی، خوردگی تأسیسات سـازههـای رودخانـهای و مشک?ت دیگر را دربر دارد. همچنین رسوبات معلق کیفیت آب را برای مصارف بشری تحت تأثیر قرار می دهد. بنـابراین، در هیـدرولیک رودخانـه و ژئومورفولوژی آن، بررسی ظرفیت حمل رسوب جریان و مکانیسم انتقال رسـوب از اهمیـت ویـژه ای برخوردار است. رویک...
support vector regression (svr) is a learning method based on the support vector machine (svm) that can be used for curve fitting and function estimation. in this paper, the ability of the nu-svr to predict the catalytic activity of the fischer-tropsch (ft) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (mlp) and subtractiv...
a robust and reliable quantitative structure-property relationship (qspr) study was established to forecast the melting points (mps) of a diverse and long set including 250 drug-like compounds. based on the calculated descriptors by dragon software package, to detect homogeneities and to split the whole dataset into training and test sets, a principal component analysis (pca) approach was used...
The relevance vector machine (RVM) (Tipping, 2001) encapsulates a sparse probabilistic model for machine learning tasks. Like support vector machines, use of the kernel trick allows modelling in high dimensional feature spaces to be achieved at low computational cost. However, sparsity is controlled not just by the automatic relevance determination (ARD) prior but also by the choice of basis fu...
We describe a Deep Learning approach to modeling the relevance of a document’s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated p...
The ‘sparse Bayesian’ modelling approach, as exemplified by the ‘relevance vector machine’, enables sparse classification and regression functions to be obtained by linearly-weighting a small number of fixed basis functions from a large dictionary of potential candidates. Such a model conveys a number of advantages over the related and very popular ‘support vector machine’, but the necessary ‘t...
We investigate a new kernel–based classifier: the Kernel Fisher Discriminant (KFD). A mathematical programming formulation based on the observation that KFD maximizes the average margin permits an interesting modification of the original KFD algorithm yielding the sparse KFD. We find that both, KFD and the proposed sparse KFD, can be understood in an unifying probabilistic context. Furthermore,...
Classifiers favoring sparse solutions, such as support vector machines, relevance vector machines, LASSO-regression based classifiers, etc., provide competitive methods for classification problems in high dimensions. However, current algorithms for training sparse classifiers typically scale quite unfavorably with respect to the number of training examples. This paper proposes online and multi-...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید