نتایج جستجو برای: relevance vector regression

تعداد نتایج: 625475  

Journal: :Mathematical Problems in Engineering 2014

Journal: :IEEE Transactions on Pattern Analysis and Machine Intelligence 2000

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده مهندسی 1392

انتقال رسوب و رسوبگذاری، پـیآمـدهایی چـون ایجـاد جزایـر رسـوبی در مـسیر رودخانه و در نتیجه کاهش ظرفیت انتقال جریانهای سی?بی، خوردگی تأسیسات سـازههـای رودخانـهای و مشک?ت دیگر را دربر دارد. همچنین رسوبات معلق کیفیت آب را برای مصارف بشری تحت تأثیر قرار می دهد. بنـابراین، در هیـدرولیک رودخانـه و ژئومورفولوژی آن، بررسی ظرفیت حمل رسوب جریان و مکانیسم انتقال رسـوب از اهمیـت ویـژه ای برخوردار است. رویک...

Journal: :physical chemistry research 0
ali akbar mirzaei university of sistan and baluchestan somayeh golestan university of sistan and baluchestan seyed-masoud barakati university of sistan and baluchestan

support vector regression (svr) is a learning method based on the support vector machine (svm) that can be used for curve fitting and function estimation. in this paper, the ability of the nu-svr to predict the catalytic activity of the fischer-tropsch (ft) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (mlp) and subtractiv...

Journal: :journal of chemical health risks 0
alireza jalali department of chemistry, college of basic sciences, shahrood branch, islamic azad university, shahrood, iran mehdi nekoei department of chemistry, college of basic sciences, shahrood branch, islamic azad university, shahrood, iran majid mohammadhosseini department of chemistry, college of basic sciences, shahrood branch, islamic azad university, shahrood, iran

a robust and reliable quantitative structure-property relationship (qspr) study was established to forecast the melting points (mps)  of a diverse and long set including 250 drug-like compounds. based on the calculated descriptors by dragon software package, to detect homogeneities and to split the whole dataset into training and test sets, a principal component analysis (pca) approach was used...

2008
Andrew Clark Richard Everson

The relevance vector machine (RVM) (Tipping, 2001) encapsulates a sparse probabilistic model for machine learning tasks. Like support vector machines, use of the kernel trick allows modelling in high dimensional feature spaces to be achieved at low computational cost. However, sparsity is controlled not just by the automatic relevance determination (ARD) prior but also by the choice of basis fu...

2017
Sunil Mohan Nicolas Fiorini Sun Kim Zhiyong Lu

We describe a Deep Learning approach to modeling the relevance of a document’s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated p...

2003
Michael E. Tipping Anita C. Faul

The ‘sparse Bayesian’ modelling approach, as exemplified by the ‘relevance vector machine’, enables sparse classification and regression functions to be obtained by linearly-weighting a small number of fixed basis functions from a large dictionary of potential candidates. Such a model conveys a number of advantages over the related and very popular ‘support vector machine’, but the necessary ‘t...

2000
Sebastian Mika Gunnar Rätsch Klaus-Robert Müller

We investigate a new kernel–based classifier: the Kernel Fisher Discriminant (KFD). A mathematical programming formulation based on the observation that KFD maximizes the average margin permits an interesting modification of the original KFD algorithm yielding the sparse KFD. We find that both, KFD and the proposed sparse KFD, can be understood in an unifying probabilistic context. Furthermore,...

Journal: :Journal of Machine Learning Research 2008
Suhrid Balakrishnan David Madigan

Classifiers favoring sparse solutions, such as support vector machines, relevance vector machines, LASSO-regression based classifiers, etc., provide competitive methods for classification problems in high dimensions. However, current algorithms for training sparse classifiers typically scale quite unfavorably with respect to the number of training examples. This paper proposes online and multi-...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید