نتایج جستجو برای: recurrent neural network rnn
تعداد نتایج: 942872 فیلتر نتایج به سال:
Automatic Irony Detection refers to making computer understand the real intentions of human behind the ironic language. Much work has been done using classic machine learning techniques applied on various features. In contrast to sophisticated feature engineering, this paper investigates how the deep learning can be applied to the intended task with the help of word embedding. Three different d...
In this paper, we propose a context-aware keyword spotting model employing a character-level recurrent neural network (RNN) for spoken term detection in continuous speech. The RNN is end-toend trained with connectionist temporal classification (CTC) to generate the probabilities of character and word-boundary labels. There is no need for the phonetic transcription, senone modeling, or system di...
Convolutional Neural Network(CNN) has been widely used for image recognition with great success. However, there are a number of limitations of the current CNN based image recognition paradigm. First, the receptive field of CNN is generally fixed, which limits its recognition capacity when the input image is very large. Second, it lacks the computational scalability for dealing with images with ...
A modiied Recurrent Neural Network (RNN) is used to learn a Self-Routing Interconnection Network (SRIN) from a set of routing examples. The RNN is modiied so that it has several distinct initial states. This is equivalent to a single RNN learning multiple diierent synchronous sequential machines. We deene such a sequential machine structure as augmented and show that a SRIN is essentially an Au...
In this paper, we investigate two different recurrent neural network (RNN) architectures: Elman RNN and recently proposed clockwork RNN [1] for statistical parametric speech synthesis (SPSS). Of late, deep neural networks are being used for SPSS which involve predicting every frame independent of the previous predictions, and hence requires post-processing for ensuring smooth evolution of speec...
in the regulated nakdong river, algal proliferations are annually observed in some seasons, with cyanobacteria (microcystis aeruginosa) appearing in summer and diatom blooms (stephanodiscus hantzschii) in winter. this study aims to develop two ecological models forecasting future chlorophyll a at two time-steps (one-week and one-year forecasts), using recurrent neural networks tuned by genetic...
With the demand of high data rate and low latency in fifth generation (5G), deep neural network decoder (NND) has become a promising candidate due to its capability of one-shot decoding and parallel computing. In this paper, three types of NND, i.e., multi-layer perceptron (MLP), convolution neural network (CNN) and recurrent neural network (RNN), are proposed with the same parameter magnitude....
Bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) has been successfully applied in many tagging tasks. BLSTM-RNN relies on the distributed representation of words, which implies that the former can be futhermore improved through learning the latter better. In this work, we propose a novel approach to learn distributed word representations by training BLSTM-RNN on a spe...
We introduce MinimalRNN, a new recurrent neural network architecture that achieves comparable performance as the popular gated RNNs with a simplified structure. It employs minimal updates within RNN, which not only leads to efficient learning and testing but more importantly better interpretability and trainability. We demonstrate that by endorsing the more restrictive update rule, MinimalRNN l...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید