نتایج جستجو برای: portfolio optimization

تعداد نتایج: 335260  

2005
Nadezhda Safronova Isabella Huber

This paper analyses the stable distributional approach for portfolio optimisation. We consider a portfolio optimization problem under the assumption of normal (Gaussian) and stable (nonGaussian) distributed asset returns. We compare the results of portfolio allocations in normal and stable cases.

2008
Lauren Hannah Warren Powell Jeffrey Stewart

This paper provides an overview of the one-stage R&D portfolio optimization problem. It provides a novel problem model that can be solved with stochastic combinatorial optimization methods. Current solution methods are reviewed an a new method, Stochastic Gradient Portfolio Optimization (SGPO), is proposed. We proved global convergence under certain conditions. SGPO is numerically compared to c...

Journal: :Operations Research 2006
Frank Lutgens Jos F. Sturm Antoon W. J. Kolen

The paper considers robust optimization to cope with uncertainty about the stock return process in one period option hedging problems. The robust approach relates portfolio choice to uncertainty, making more cautious hedges when uncertainty is high. We represent uncertainty by a set of plausible expected returns of the underlying stocks and show that for this set the robust problem is a second ...

Investment decision making is one of the key issues in financial management. Selecting the appropriate tools and techniques that can make optimal portfolio is one of the main objectives of the investment world. This study tries to optimize the decision making in stock selection or the optimization of the portfolio by means of the artificial colony of honey bee algorithm. To determine the effect...

Journal: :Computers & OR 2008
Dimitris Bertsimas Dessislava Pachamanova

We study the viability of different robust optimization approaches to multiperiod portfolio selection. Robust optimization models treat future asset returns as uncertain coefficients in an optimization problem, and map the level of risk aversion of the investor to the level of tolerance of the total error in asset return forecasts.We suggest robust optimization formulations of the multiperiod p...

2006
Chi-Ming Lin Mitsuo Gen

Multiobjective portfolio optimization problem is the portfolio process of the highest expected return among the various financial commodities of the capital market to meet the expected return objectives. And one of the most important and common management issues lies in determining the best portfolio out of a given set of investment proposals. As we know, modern portfolio theory provides a well...

The main purpose of this research is portfolio optimization in Tehran securities exchange using the black hole algorithm and the Gravitational Research algorithm. We also propose an algorithm named Hybrid Algorithm which combines the two algorithms above to cover the weaknesses of these two algorithms. Finally we compare the results with the Markowitz model and choose the optimal algorithm.<br ...

2009
Cristinca FULGA

In this paper, we consider the problem of a decision maker who is concerned with the management of a portfolio over a finite horizon. The portfolio optimization problem involves portfolio rebalancing decisions in response to new information on market future prices of the risky assets. Rebalancing decisions are manifested in the revision of holdings through sales and purchases of assets. We assu...

2001
Ulrich Derigs

In this paper we present a framework, i.e. a concept and design as well as results with a prototypical implementation of a metaheuristic-based decision support system PM-DSS c © for portfolio optimization and managing investment guidelines. PM-DSS c © can be used for active as well as passive fund management. 1 The general problem In this paper we present a framework, i.e. a concept and design ...

Journal: :Decision Support Systems 2004
Kai Chun Chiu Lei Xu

Ever since the inception of Markowitz’s modern portfolio theory, static portfolio optimization techniques were gradually phased out by dynamic portfolio management due to the growth of popularity in automated trading. In view of the intensive computational needs, it is common to use machine learning approaches on Sharpe ratio maximization for implementing dynamic portfolio optimization. In the ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->