نتایج جستجو برای: paired domination number
تعداد نتایج: 1216065 فیلتر نتایج به سال:
given a graph $g$, the total dominator coloring problem seeks aproper coloring of $g$ with the additional property that everyvertex in the graph is adjacent to all vertices of a color class. weseek to minimize the number of color classes. we initiate to studythis problem on several classes of graphs, as well as findinggeneral bounds and characterizations. we also compare the totaldominator chro...
A dominating set of a graph is a vertex subset that any vertex belongs to or is adjacent to. Among the many well-studied variants of domination are the so-called paired-dominating sets. A paired-dominating set is a dominating set whose induced subgraph has a perfect matching. In this paper, we continue their study. We focus on graphs that do not contain the net-graph (obtained by attaching a pe...
a {em roman dominating function} on a graph $g$ is a function$f:v(g)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}a {em restrained roman dominating}function} $f$ is a {color{blue} roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} the wei...
In a graph G, a vertex subset S ⊆ V (G) is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. A dominating set S of a graph G is called a paired-dominating set if the induced subgraph G[S] contains a perfect matching. The paired-domination problem involves finding a smallest paired-dominating set of G. Given an intersection model of an interval graph G with ...
let $g=(v(g),e(g))$ be a graph, $gamma_t(g)$. let $ooir(g)$ be the total domination and oo-irredundance number of $g$, respectively. a total dominating set $s$ of $g$ is called a $textit{total perfect code}$ if every vertex in $v(g)$ is adjacent to exactly one vertex of $s$. in this paper, we show that if $g$ has a total perfect code, then $gamma_t(g)=ooir(g)$. as a consequence, ...
let $r$ be a commutative ring and $m$ be an $r$-module with $t(m)$ as subset, the set of torsion elements. the total graph of the module denoted by $t(gamma(m))$, is the (undirected) graph with all elements of $m$ as vertices, and for distinct elements $n,m in m$, the vertices $n$ and $m$ are adjacent if and only if $n+m in t(m)$. in this paper we study the domination number of $t(ga...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید