An operator T is called (α, β)-normal (0 ≤ α ≤ 1 ≤ β) if αT ∗T ≤ TT ∗ ≤ βT ∗T. In this paper, we establish various inequalities between the operator norm and its numerical radius of (α, β)-normal operators in Hilbert spaces. For this purpose, we employ some classical inequalities for vectors in inner product spaces.