نتایج جستجو برای: non commuting graph
تعداد نتایج: 1495573 فیلتر نتایج به سال:
We say that two graphs G1 and G2 with the same vertex set commute if their adjacency matrices commute. In this paper, we find all integers n such that the complete bipartite graph Kn, n is decomposable into commuting perfect matchings or commuting Hamilton cycles. We show that there are at most n−1 linearly independent commuting adjacency matrices of size n; and if this bound occurs, then there...
In a recent paper C. Miguel proved that the diameter of the commuting graph of the matrix ring $mathrm{M}_n(mathbb{R})$ is equal to $4$ if either $n=3$ or $ngeq5$. But the case $n=4$ remained open, since the diameter could be $4$ or $5$. In this work we close the problem showing that also in this case the diameter is $4$.
For a group G and X a subset of G the commuting graph of G on X, denoted by C(G,X), is the graph whose vertex set is X with x, y ∈ X joined by an edge if x 6= y and x and y commute. If the elements in X are involutions, then C(G,X) is called a commuting involution graph. This paper studies C(G,X) when G is a 3-dimensional projective special unitary group and X a G-conjugacy class of involutions...
let $g$ be a non-abelian group of order $p^n$, where $nleq 5$ in which $g$ is not extra special of order $p^5$. in this paper we determine the maximal size of subsets $x$ of $g$ with the property that $xyneq yx$ for any $x,y$ in $x$ with $xneq y$.
In this paper we study various simplicial complexes associated to the commutative structure of a finite group G. We define NC(G) (resp. C(G)) as the complex associated to the poset of pairwise non-commuting (resp. commuting) sets of nontrivial elements in G. We observe that NC(G) has only one positive dimensional connected component, which we call BNC(G), and we prove that BNC(G) is simply conn...
let $g$ be a finite group. a subset $x$ of $g$ is a set of pairwise non-commuting elements if any two distinct elements of $x$ do not commute. in this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and x, y ∈ X (x 6= y) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ∆(G). The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(∆(G)) is abelian if and only if ...
The Sylow graph of a finite group originates from recent investigations on certain classes of groups, defined in terms of normalizers of Sylow subgroups. The connectivity of this graph has been proved only last year with the use of the classification of finite simple groups (CFSG). A series of interesting questions arise naturally. First of all, it is not clear whether it is possible to avoid C...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید