نتایج جستجو برای: non archimedean spaces
تعداد نتایج: 1434444 فیلتر نتایج به سال:
We prove that all proper rigid-analytic spaces with “enough” algebraically independent meromorphic functions are algebraic (in the sense of proper algebraic spaces). This is a non-archimedean analogue of a result of Artin over C.
In this survey article, we discuss some recent progress on tropical Dolbeault cohomology of varieties over non-Archimedean fields, a new cohomology theory based on real forms defined by Chambert-Loir and Ducros.
The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.
Let G be a connected semisimple group over a non-Archimedean local field. For every faithful, geometrically irreducible linear representation of G we define a compactification of the associated Bruhat-Tits building X(G). This yields a finite family of compactifications of X(G) which contains the polyhedral compactification. Besides, this family can be seen as a non-Archimedean analogue of the f...
One of the main subtleties of non-Archimedean analysis is that the natural topology that one puts on non-Archimedean analytic spaces is totally disconnected, meaning that there is a base for the topology consisting of sets which are both open and closed. This makes it difficult, for instance, to define a good notion of analytic function so that one has analytic continuation properties. Of cours...
In the theory of schemes, faithfully flat descent is a very powerful tool. One wants a descent theory not only for quasi-coherent sheaves and morphisms of schemes (which is rather elementary), but also for geometric objects and properties of morphisms between them. In rigid-analytic geometry, descent theory for coherent sheaves was worked out by Bosch and Görtz [BG, 3.1] under some quasi-compac...
For the whole paper, K denotes an algebraically closed field endowed with a nontrivial non-archimedean complete absolute value | |. The corresponding valuation is v := − log | | with value group Γ := v(K). The valuation ring is denoted by K. Note that the residue field K̃ is algebraically closed. In Theorem 1.3, §8 and in the second part of §9, we start with a field K endowed with a discrete val...
In this paper, we study the geometry of non-Archimedean Gromov-Hausdorff metric. This is the first part of our series work, which we try to establish some facts about the counterpart of Gromov-Hausdorff metric in the non-Archimedean spaces. One of the motivation of this work is to find some implied relations between this geometry and number theory via p-adic analysis, so that we can use the for...
In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...
in this thesis we will present three topics. we define approximate fixed points in fuzzy normed spaces. also we obtain some necessary and sufficient conditions on the existence of? -fixed points for ? > 0. at the continue some results about approximate fixed points for a class of non-expansive maps on g-metric spaces are obtained and we define approximate fixed points in partial metric spa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید