نتایج جستجو برای: mopso nsga

تعداد نتایج: 2497  

2009
M. A. Abido

A newmultiobjective particle swarm optimization (MOPSO) technique for environmental/economic dispatch (EED) problem is proposed in this paper. The proposed MOPSO technique evolves a multiobjective version of PSO by proposing redefinition of global best and local best individuals in multiobjective optimization domain. The proposedMOPSO technique has been implemented to solve the EED problemwith ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علم و فرهنگ - دانشکده مهندسی صنایع 1390

هدف از این تحقیق، حل مساله زمان بندی پروژه با منابع محدود با در نظر گرفتن مفروضات خاص برای این مساله با استفاده از یک الگوریتم کارا می باشد. در این تحقیق، مساله زمان بندی پرو‍ژه با محدودیت منابع در حالی که فعالیت ها با توجه به زمان ها و هزینه های مترتب بر ایشان، حالات اجرایی متعددی را دارا بوده و پارامترهای این حالات اجرایی از جنس اعداد فازی می باشد، بررسی می گردد. در هیچ یک از تحقیقات موجود در...

Journal: :Entropy 2013
Eduardo José Solteiro Pires José António Tenreiro Machado Paulo B. de Moura Oliveira

Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly ...

Journal: :Journal of Intelligent and Fuzzy Systems 2014
Walid Elloumi Nesrine Baklouti Ajith Abraham Adel M. Alimi

In this paper, we illustrate a novel optimization approach based on Multi-objective Particle Swarm Optimization (MOPSO) and Fuzzy Ant Colony Optimization (FACO). The basic idea is to combine these two techniques using the best particle of the Fuzzy Ant algorithm and integrate it as the best local Particle Swarm Optimization (PSO), to formulate a new approach called hybrid MOPSO with FACO (H-MOP...

Journal: :Research, Society and Development 2022

Accelerated population growth in the 21st century and increased demand for energy sources, associated with climate change, have resulted two main challenges: search sustainable sources need to find more efficient ways use extant sources. The forecasting module provides an estimate of future usage these appliances it is source recommended module’s suggestion. Time Series Forecasting techniques, ...

Journal: :CoRR 2016
Yichuan Yang Tianxian Zhang Wei Yi Lingjiang Kong Xiaolong Li Bing Wang Xiaobo Yang

We consider an optimization deployment problem of multistatic radar system (MSRS). Through the antenna placing and the transmitted power allocating, we optimally deploy the MSRS for two goals: 1) the first one is to improve the coverage ratio of surveillance region; 2) the second goal is to get a even distribution of signal energy in surveillance region. In two typical working modes of MSRS, we...

2011
You Zhou Ying Tan

In the recent years, multi-objective particle swarm optimization (MOPSO) has become quite popular in the field of multi-objective optimization. However, due to a large amount of fitness evaluations as well as the task of archive maintaining, the running time of MOPSO for optimizing some difficult problems may be quite long. This paper proposes a parallel MOPSO based on consumer-level Graphics P...

2015
Hoai Bach Nguyen Bing Xue Mengjie Zhang

This paper presents a particle swarm optimisation (PSO) based multi-objective feature selection approach to evolving a set of non-dominated feature subsets and achieving high classification performance. Firstly, a pure multi-objective PSO (named MOPSO-SRD) algorithm, is applied to solve feature selection problems. The results of this algorithm is then used to compare with the proposed a multi-o...

Journal: :Mathematics 2023

Aiming at the problem of multimodal transport path planning under uncertain environments, this paper establishes a multi-objective fuzzy nonlinear programming model considering mixed-time window constraints by taking cost, time, and carbon emission as optimization objectives. To solve model, is de-fuzzified expectation value method chance-constrained method. Combining game theory with weighted ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید