نتایج جستجو برای: mathscrn hausdorff spaces and fuzzy automata mathscrn locally compact spaces
تعداد نتایج: 16917155 فیلتر نتایج به سال:
We introduce the notion of the Gromov-Hausdorff fuzzy distance between two non-Archimedean fuzzy metric spaces (in the sense of Kramosil and Michalek). Basic properties involving convergence and the fuzzy version of the completeness theorem are presented. We show that the topological properties induced by the classic Gromov-Hausdorff distance on metric spaces can be deduced from our approach.
A sequential space (X,T) is called minimal sequential if no sequential topology on X is strictly weaker than T . This paper begins the study of minimal sequential Hausdorff spaces. Characterizations ofminimal sequential Hausdorff spaces are obtained using filter bases, sequences, and functions satisfying certain graph conditions. Relationships between this class of spaces and other classes of s...
Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...
Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...
We show that if we interpret modal diamond as the derived set operator of a topological space, then the modal logic of Stone spaces is K4 and the modal logic of weakly scattered Stone spaces is K4G. As a corollary, we obtain that K4 is also the modal logic of compact Hausdorff spaces and K4G is the modal logic of weakly scattered compact Hausdorff spaces. §
Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes’s example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...
Generalizing a theorem of Ph. Dwinger [7], we describe the ordered set of all (up to equivalence) zero-dimensional locally compact Hausdorff extensions of a zerodimensional Hausdorff space. Using this description, we find the necessary and sufficient conditions which has to satisfy a map between two zero-dimensional Hausdorff spaces in order to have some kind of extension over two given Hausdor...
In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.
The main purpose of this paper is to prove the intuitionistic fuzzy contraction properties of the Hutchinson-Barnsley operator on the intuitionistic fuzzy hyperspace with respect to the Hausdorff intuitionistic fuzzy metrics. Also we discuss about the relationships between the Hausdorff intuitionistic fuzzy metrics on the intuitionistic fuzzy hyperspaces. Our theorems generalize and extend some...
By computing the completely bounded norm of flip map on Haagerup tensor product [Formula: see text] associated to a pair continuous mappings locally compact Hausdorff spaces text], we establish simple characterization Beck-Chevalley condition for base change operator modules over commutative text]-algebras, and descent theorem fields Hilbert spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید