نتایج جستجو برای: mads box genes

تعداد نتایج: 505196  

Journal: :Eukaryotic cell 2006
Nicole Nolting Stefanie Pöggeler

MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S....

2012
Rong-Mei Wu Eric F. Walton Annette C. Richardson Marion Wood Roger P. Hellens Erika Varkonyi-Gasic

MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with ho...

Journal: :The Plant cell 2008
Marian Bemer Mieke Wolters-Arts Ueli Grossniklaus Gerco C Angenent

MADS box genes in plants consist of MIKC-type and type I genes. While MIKC-type genes have been studied extensively, the functions of type I genes are still poorly understood. Evidence suggests that type I MADS box genes are involved in embryo sac and seed development. We investigated two independent T-DNA insertion alleles of the Arabidopsis thaliana type I MADS box gene AGAMOUS-LIKE61 (AGL61)...

Journal: :Genetics 2003
Amy Litt Vivian F Irish

Phylogenetic analyses of angiosperm MADS-box genes suggest that this gene family has undergone multiple duplication events followed by sequence divergence. To determine when such events have taken place and to understand the relationships of particular MADS-box gene lineages, we have identified APETALA1/FRUITFULL-like MADS-box genes from a variety of angiosperm species. Our phylogenetic analyse...

Journal: :Trends in genetics : TIG 2010
Lydia Gramzow Markus S Ritz Günter Theissen

MADS-domain transcription factors are involved in signal transduction and developmental control in plants, animals and fungi. Because their diversification is linked to the origin of novelties in multicellular eukaryotes, the early evolution of MADS-domain proteins is of interest, but has remained enigmatic. Employing whole genome sequence information and remote homology detection methods, we d...

Journal: :PLoS Biology 2009
Kerstin Kaufmann Jose M Muiño Ruy Jauregui Chiara A Airoldi Cezary Smaczniak Pawel Krajewski Gerco C Angenent

The molecular mechanisms by which floral homeotic genes act as major developmental switches to specify the identity of floral organs are still largely unknown. Floral homeotic genes encode transcription factors of the MADS-box family, which are supposed to assemble in a combinatorial fashion into organ-specific multimeric protein complexes. Major mediators of protein interactions are MADS-domai...

Journal: :The Plant cell 2009
Shinnosuke Ohmori Mayumi Kimizu Maiko Sugita Akio Miyao Hirohiko Hirochika Eiji Uchida Yasuo Nagato Hitoshi Yoshida

Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and...

2014
Zhao-Jun Pan You-Yi Chen Jian-Syun Du Yun-Yu Chen Mei-Chu Chung Wen-Chieh Tsai Chun-Neng Wang Hong-Hwa Chen

The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four...

2013
Dong Sun Lee Li Juan Chen Cheng Yun Li Yongsheng Liu Xue Lin Tan Bao-Rong Lu Juan Li Shu Xian Gan Sang Gu Kang Hak Soo Suh Youyong Zhu

Many homeotic MADS-box genes have been identified as controllers of the floral transition and floral development. However, information regarding Bsister (Bs)-function genes in monocots is still limited. Here, we describe the functional characterization of a Bs-group MADS-box gene FEMALE-STERILE (FST), whose frame-shift mutation (fst) results in abnormal ovules and the complete abortion of zygot...

2018
Feiyi Huang Tongkun Liu Xilin Hou

MADS-box genes form a large gene family in plants and are involved in multiple biological processes, such as flowering. However, the regulation mechanism of MADS-box genes in flowering remains unresolved, especially under short-term cold conditions. In the present study, we isolated BcMAF1, a Pak-choi (Brassica rapa ssp. Chinensis) MADS AFFECTING FLOWERING (MAF), as a floral repressor and funct...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید