نتایج جستجو برای: korteweg de vries equation
تعداد نتایج: 1754389 فیلتر نتایج به سال:
We establish the semiclassical limit of the one-dimensional defocusing cubic nonlinear Schrödinger (NLS) equation. Complete integrability is exploited to obtain a global characterization of the weak limits of the entire NLS hierarchy of conserved densities as the field evolves from reflectionless initial data under all the associated commuting flows. Consequently, this also establishes the zero...
A proper bilinear form is proposed for the N = 1 supersymmetric modified Korteweg-de Vries equation. The bilinear Bäcklund transformation for this system is constructed. As applications, some solutions are presented for it.
This article concerns the nonlinear Korteweg-de Vries equation with boundary timedelay feedback. Under appropriate assumption on the coefficients of the feedbacks (delayed or not), we first prove that this nonlinear infinite dimensional system is well-posed for small initial data. The main results of our study are two theorems stating the exponential stability of the nonlinear time delay system...
The cnoidal wave solution of the integrable Korteweg de Vries equation is the most basic of its periodic solutions. Following earlier work where the linear stability of these solutions was established, we prove in this paper that cnoidal waves are (nonlinearly) orbitally stable with respect to so-called subharmonic perturbations: perturbations that are periodic with period any integer multiple ...
In this paper, we study the orbital stability for a four-parameter family of periodic stationary traveling wave solutions to the generalized Korteweg-de Vries (gKdV) equation ut = uxxx + f(u)x. In particular, we derive sufficient conditions for such a solution to be orbitally stable in terms of the Hessian of the classical action of the corresponding traveling wave ordinary differential equatio...
We solve the Cauchy problem for the Korteweg–de Vries equation with initial conditions which are steplike Schwartz-type perturbations of finitegap potentials under the assumption that the mutual spectral bands either coincide or are disjoint.
We solve the Cauchy problem for the modified Korteweg–de Vries equation with steplike quasi-periodic, finite-gap initial conditions under the assumption that the perturbations have a given number of derivatives and moments finite.
The goal of this note is to construct a class of traveling solitary wave solutions for the compound Burgers-Korteweg-de Vries equation by means of a hyperbolic ansatz. A computational error in a previous work has been clarified.
In this paper, we prove that there exist no blow-up solutions of the critical generalized Korteweg–de Vries (gKdV) equation with minimal L2-mass, assuming an L2-decay on the right on the initial data.
The Ostrovsky equation is a model for gravity waves propagating down a channel under the influence of Coriolis force. This equation is a modification of the famous Korteweg-de Vries equation and is also Hamiltonian. However the Ostrovsky equation is not integrable and in this contribution we prove its nonintegrability. We also study local bifurcations of its solitary waves. MSC: 35Q35, 35Q53, 3...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید