نتایج جستجو برای: kernel estimator
تعداد نتایج: 78705 فیلتر نتایج به سال:
This paper analyzes the higher order asymptotic properties of Generalized Method of Moments (GMM) estimators for linear time series models using many lags as instruments. A data dependent moment selection method based on minimizing the approximate mean squared error is developed. In addition, a new version of the GMM estimator based on kernel weighted moment conditions is proposed. It is shown ...
• Boundary effects for kernel estimators of curves with compact supports are well known in regression and density estimation frameworks. In this paper we address the use of boundary kernels for distribution function estimation. We establish the ChungSmirnov law of iterated logarithm and an asymptotic expansion for the mean integrated squared error of the proposed estimator. These results show t...
A mean function in reproducing kernel Hilbert space, or a kernel mean, is an important part of many applications ranging from kernel principal component analysis to Hilbert-space embedding of distributions. Given finite samples, an empirical average is the standard estimate for the true kernel mean. We show that this estimator can be improved via a well-known phenomenon in statistics called Ste...
A mean function in a reproducing kernel Hilbert space (RKHS), or a kernel mean, is central to kernel methods in that it is used by many classical algorithms such as kernel principal component analysis, and it also forms the core inference step of modern kernel methods that rely on embedding probability distributions in RKHSs. Given a finite sample, an empirical average has been used commonly as...
In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...
We propose a novel kernel estimator of the baseline function in a general highdimensional Cox model, for which we derive non-asymptotic rates of convergence. To construct our estimator, we first estimate the regression parameter in the Cox model via a LASSO procedure. We then plug this estimator into the classical kernel estimator of the baseline function, obtained by smoothing the so-called Br...
S For independent data, it is well known that kernel methods and spline methods are essentially asymptotically equivalent (Silverman, 1984). However, recent work of Welsh et al. (2002) shows that the same is not true for clustered/longitudinal data. Splines and conventional kernels are different in localness and ability to account for the within-cluster correlation. We show that a smoothi...
Consider estimation of a population mean of a response variable when the observations are missing at random with respect to the covariate. Two common approaches to imputing the missing values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse weighting approach. The regression approach includes the kernel regression imputation and the nearest neighbor imputa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید