نتایج جستجو برای: hopf algebra

تعداد نتایج: 76714  

2013
Sarah Witherspoon

Group algebras are Hopf algebras, and their Hopf structure plays crucial roles in representation theory and cohomology of groups. A Hopf algebra is an algebra A (say over a field k) that has a comultiplication (∆ : A → A ⊗k A) generalizing the diagonal map on group elements, an augmentation (ε : A → k) generalizing the augmentation on a group algebra, and an antipode (S : A → A) generalizing th...

2006
Darren B. Parker

We study forms of coalgebras and Hopf algebras (i.e. coalgebras and Hopf algebras which are isomorphic after a suitable extension of the base field). We classify all forms of grouplike coalgebras according to the structure of their simple subcoalgebras. For Hopf algebras, given a W ∗-Galois field extension K ⊆ L for W a finite-dimensional semisimple Hopf algebra and a K-Hopf algebra H, we show ...

2004
Lydia Delvaux Alfons Van Daele

Let G be any group and let K(G) denote the multiplier Hopf algebra of complex functions with finite support in G. The product in K(G) is pointwise. The comultiplication on K(G) is defined with values in the multiplier algebra M(K(G)⊗K(G)) by the formula (∆(f))(p, q) = f(pq) for all f ∈ K(G) and p, q ∈ G. In this paper we consider multiplier Hopf algebras B (over C) such that there is an embeddi...

1998
S. Majid

We introduce a quantum double quasitriangular quasi-Hopf algebra D(H) associated to any quasi-Hopf algebra H. The algebra structure is a cocycle double cross product. We use categorical reconstruction methods. As an example, we recover the quasi-Hopf algebra of Dijkgraaf, Pasquier and Roche as the quantum double D(G) associated to a finite group G and group 3-cocycle φ. We also discuss D(Ug) as...

2012
Alain Bruguières Alexis Virelizier

Let A be a Hopf algebra in a braided rigid category B. In the case B admits a coend C, which is a Hopf algebra in B, we defined in 2008 the double D(A) = A⊗ A⊗C of A, which is a quasitriangular Hopf algebra in B whose category of modules is isomorphic to the center of the category of A-modules as a braided category. Here, quasitriangular means endowed with an R-matrix (our notion of R-matrix fo...

2006
CHRISTIAN BROUDER WILLIAM SCHMITT

The Hopf algebra of renormalization in quantum field theory is described at a general level. The products of fields at a point are assumed to form a bialgebra B and renormalization endows T (T (B)+), the double tensor algebra of B, with the structure of a noncommutative bialgebra. When the bialgebra B is commutative, renormalization turns S(S(B)+), the double symmetric algebra of B, into a comm...

2012
L. Foissy

We study the self-dual Hopf algebra HSP of special posets introduced by Malvenuto and Reutenauer and the Hopf algebra morphism from HSP to the Hopf algebra of free quasi-symmetric functions FQSym given by linear extensions. In particular, we construct two Hopf subalgebras both isomorphic to FQSym; the first one is based on plane posets, the second one on heap-ordered forests. An explicit isomor...

2009
ALEXANDRU CHIRVĂSITU

We notice that for a Hopf algebra H , its antipode S is both an epimorphism and a monomorphism from H to H in the category of Hopf algebras over a field. Together with the existence of Hopf algebras with non-injective or non-surjective antipode, this proves the existence of non-surjective epimorphisms and non-injective monomorphisms in the category of Hopf algebras. Using Schauenburg’s free Hop...

2004
KURUSCH EBRAHIMI-FARD LI GUO DIRK KREIMER

We extend the results we obtained in an earlier work [1]. The cocommutative case of ladders is generalized to a full Hopf algebra of (decorated) rooted trees. For Hopf algebra characters with target space of Rota-Baxter type, the Birkhoff decomposition of renormalization theory is derived by using the RotaBaxter double construction, respectively Atkinson’s theorem. We also outline the extension...

2005
A. Hegazi

The Multiplier Hopf Group Coalgebra was introduced by Hegazi in 2002 [] as a generalization of Hope group caolgebra, introduced by Turaev in 2000 [], in the non-unital case. We prove that the concepts introduced by A.Van Daele in constructing multiplier Hopf algebra [3] can be adapted to serve again in our construction. A multiplier Hopf group coalgebra is a family of algebras A = {A α } α∈π , ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید