نتایج جستجو برای: full finsler module

تعداد نتایج: 361091  

Journal: :iranian journal of science and technology (sciences) 2008
n. sadegh-zadeh

the main objective of this paper is to find the necessary and sufficient condition of a given finslermetric to be einstein in order to classify the einstein finsler metrics on a compact manifold. the consideredeinstein finsler metric in the study describes all different kinds of einstein metrics which are pointwiseprojective to the given one. this study has resulted in the following theorem tha...

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

Journal: :iranian journal of science and technology (sciences) 2015
b. bidabad

a projective parameter of a geodesic as solution of certain ode is defined to be a parameter which is invariant under projective change of metric. using projective parameter and poincaré metric, an intrinsic projectively invariant pseudo-distance can be constructed. in the present work, solutions of the above ode are characterized with respect to the sign of parallel ricci tensor on a finsler s...

2011
Weidong Song Xingshang Wang W. D. SONG

Locally flat Finsler metrics arise from information geometry. Some speciel locally dually flat Finsler metrics had been studied in Cheng et al. [3] and Xia [4] respectively. As we konw, a new class of Finsler metrics called general (α, β)-metrics are introduced, which are defined by a Riemannian metrics α and 1-form β. These metrics generalize (α, β)-metrics naturally. In this paper, we give a ...

2007
Dariush Latifi

In this paper, we study homogeneous geodesics in homogeneous Finsler spaces. We first give a simple criterion that characterizes geodesic vectors. We show that the geodesics on a Lie group, relative to a bi-invariant Finsler metric, are the cosets of the one-parameter subgroups. The existence of infinitely many homogeneous geodesics on compact semi-simple Lie group is established. We introduce ...

2008
A. RAZAVI

In the present paper, we investigate the necessary and sufficient condition of a given Finsler metric to be Einstein. The considered Einstein Finsler metric in the study describes all different kinds of Einstein metrics which are pointwise projective to the given one.

2011
B. Najafi A. Tayebi

In this paper, we define a new projective invariant and call it W̃ -curvature. We prove that a Finsler manifold with dimension n ≥ 3 is of constant flag curvature if and only if its W̃ -curvature vanishes. Various kinds of projectively flatness of Finsler metrics and their equivalency on Riemannian metrics are also studied. M.S.C. 2010: 53B40, 53C60.

2015
D. CS. KERTÉSZ

In this paper we take a close look at Lie derivatives on a Finsler bundle and give a geometric meaning to the vanishing of the mixed curvature of certain covariant derivatives on a Finsler bundle. As an application, we obtain some characterizations of Landsberg manifolds.

Journal: :Japanese Journal of Applied Physics 2017

2009
Zoltán Muzsnay Péter T. Nagy

The aim of this paper is to show that holonomy properties of Finsler manifolds can be very different from those of Riemannian manifolds. We prove that the holonomy group of a positive definite non-Riemannian Finsler manifold of non-zero constant curvature with dimension > 2 cannot be a compact Lie group. Hence this holonomy group does not occur as the holonomy group of any Riemannian manifold. ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید