Let K be a connected finite complex. This paper studies the problem of whether one can attach a cell to some iterated suspension ΣK so that the resulting space satisfies Poincaré duality. When this is possible, we say that ΣK is a spine. We introduce the notion of quadratic self duality and show that if K is quadratically self dual, then ΣK is a spine whenever j is a suitable power of two. The ...