نتایج جستجو برای: elliptic curves

تعداد نتایج: 120705  

2013
SARAH PELUSE

Eichler integrals play an integral part in the modular parametrizations of elliptic curves. In her master’s thesis, Kodgis conjectures several dozen zeros of Eichler integrals for elliptic curves with conductor ≤ 179. In this paper we prove a general theorem which confirms many of these conjectured zeros. We also provide two ways to generate infinite families of elliptic curves with certain zer...

2006
TONGHAI YANG

In this paper, we give a ‘direct’ construction of the endomorphism ring of supersingular elliptic curves over a prime field Fp from ‘ideal classes’ of Q( √−p). We use the result to prove that the result of Kaneko on ‘minimal’ CM liftings of such supersingular elliptic curves is a best possible result. We also prove that the result of Elkies on ‘minimal’ CM liftings of all supersingular elliptic...

2016
JENNIFER PARK BJORN POONEN JOHN VOIGHT

We present a heuristic that suggests that ranks of elliptic curves E over Q are bounded. In fact, it suggests that there are only finitely many E of rank greater than 21. Our heuristic is based on modeling the ranks and Shafarevich–Tate groups of elliptic curves simultaneously, and relies on a theorem counting alternating integer matrices of specified rank. We also discuss analogues for ellipti...

2009
Arielle Leitner

In this paper, we present an overview of elliptic curves. We give an outline of the proof that an elliptic curve is isomorphic to a torus, and then prove our main theorem: the real points of an elliptic curve form either a (0,1) or a (0,2) torus link. We also showed that the set of curves with complex multiplication can yield curves with both types of link.

Journal: :IACR Cryptology ePrint Archive 2012
Razvan Barbulescu Joppe W. Bos Cyril Bouvier Thorsten Kleinjung Peter L. Montgomery

In this paper we prove some divisibility properties of the cardinality of elliptic curves modulo primes. These proofs explain the good behavior of certain parameters when using Montgomery or Edwards curves in the setting of the elliptic curve method (ECM) for integer factorization. The ideas of the proofs help us to find new families of elliptic curves with good division properties which increa...

2005
Jordi GUÀRDIA Pilar Bayer Jordi Guàrdia

Shimura curves associated to rational nonsplit quaternion algebras are coarse moduli spaces for principally polarized abelian surfaces endowed with quaternionic multiplication. These objects are also known as fake elliptic curves. We present a method for computing equations for genus 2 curves whose Jacobian is a fake elliptic curve with complex multiplication. The method is based on the explici...

Journal: :Adv. in Math. of Comm. 2010
Koray Karabina Berkant Ustaoglu

We extend the notion of an invalid-curve attack from elliptic curves to genus 2 hyperelliptic curves. We also show that invalid singular (hyper)elliptic curves can be used in mounting invalid-curve attacks on (hyper)elliptic curve cryptosystems, and make quantitative estimates of the practicality of these attacks. We thereby show that proper key validation is necessary even in cryptosystems bas...

2001
DOUGLAS ULMER

We produce explicit elliptic curves over Fp(t) whose Mordell-Weil groups have arbitrarily large rank. Our method is to prove the conjecture of Birch and Swinnerton-Dyer for these curves (or rather the Tate conjecture for related elliptic surfaces) and then use zeta functions to determine the rank. In contrast to earlier examples of Shafarevitch and Tate, our curves are not isotrivial. Asymptoti...

2012
Mihran Papikian

We study the existence of rational points on modular curves of D-elliptic sheaves over local fields and the structure of special fibres of these curves. We discuss some applications which include finding presentations for arithmetic groups arising from quaternion algebras, finding the equations of modular curves of D-elliptic sheaves, and constructing curves violating the Hasse principle.

2001
Robert P. Gallant Robert J. Lambert Scott A. Vanstone

The fundamental operation in elliptic curve cryptographic schemes is the multiplication of an elliptic curve point by an integer. This paper describes a new method for accelerating this operation on classes of elliptic curves that have efficiently-computable endomorphisms. One advantage of the new method is that it is applicable to a larger class of curves than previous such methods. For this s...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید