نتایج جستجو برای: einstein finsler metric
تعداد نتایج: 106781 فیلتر نتایج به سال:
The notion of dually flat Finsler metrics arise from information geometry. In this paper, we will study a special class of Finsler metrics called Randers metrics to be dually flat. A simple characterization is provided and some non-trivial explicit examples are constructed. In particular, We will show that the dual flatness of a Randers metric always arises from that of some Riemannian metric b...
Smooth Finsler metrics are a natural generalization of Riemannian ones and have been widely studied in the framework of differential geometry. The definition can be weakened by allowing the metric to be only Borel measurable. This generalization is necessary in view of applications, such as, for instance, optimization problems. In this paper we show that smooth Finsler metrics are dense in Bore...
An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...
the most current pursuit algorithms for moving targets which are presented so far in the literatureare pure pursuit and pure rendezvous navigations. recently, one of the present authors has introduced ageometric model for the pure pursuit navigation algorithm. here, in this paper, we study a new algorithm forthe pursuit navigation problem which is a combination of both of the above algorithms. ...
We obtain some results in both, Lorentz and Finsler geometries, by using a correspondence between the conformal structure of standard stationary spacetimes on M = R × S and Randers metrics on S. In particular: (1) For stationary spacetimes: we give a simple characterization on when R×S is causally continuous or globally hyperbolic (including in the latter case, when S is a Cauchy hypersurface),...
In this paper we study the sub-Finsler geometry as a time-optimal control problem. In particular, we consider non-smooth and non-strictly convex sub-Finsler structures associated with the Heisenberg, Grushin, and Martinet distributions. Motivated by problems in geometric group theory, we characterize extremal curves, discuss their optimality, and calculate the metric spheres, proving their Eucl...
Finsler and Lagrange spaces can be equivalently represented as almost Kähler manifolds endowed with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov– type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental ...
– in this paper we consider some (α ,β ) -metrics such as generalized kropina, matsumoto and f (α β )2α = + metrics, and obtain necessary and sufficient conditions for them to be einstein metrics when βis a constant killing form. then we prove with this assumption that the mentioned einstein metrics must beriemannian or ricci flat.
It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید