نتایج جستجو برای: edge 2 rainbow dominating function
تعداد نتایج: 3550453 فیلتر نتایج به سال:
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...
Yannakakis and Gavril showed in [10] that the problem of finding a maximal matching of minimum size (MMM for short), also called Minimum Edge Dominating Set, is NP-hard in bipartite graphs of maximum degree 3 or planar graphs of maximum degree 3. Horton and Kilakos extended this result to planar bipartite graphs and planar cubic graphs [6]. Here, we extend the result of Yannakakis and Gavril in...
Let G = (V (G), E(G)) be a nontrivial connected graph of order n with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such t...
A tree T , in an edge-colored graph G, is called a rainbow tree if no two edges of T are assigned the same color. A k-rainbow coloring of G is an edge coloring of G having the property that for every set S of k vertices of G, there exists a rainbow tree T in G such that S ⊆ V (T ). The minimum number of colors needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by rxk(G). G...
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a ra...
An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...
In this paper we consider optimal edge colored complete graphs. We show that in any optimal edge coloring of the complete graph Kn, there is a Hamilton cycle with at most √ 8n different colors. We also prove that in every proper edge coloring of the complete graph Kn, there is a rainbow cycle with at least n/2−1 colors (A rainbow cycle is a cycle whose all edges have different colors). We show ...
Classical voting rules output a winning alternative (or a nonempty set of tied alternatives). Social welfare functions output a ranking over alternatives. There are many practical situations where we have to output a different structure than a winner or a ranking: for instance, a ranked or non-ranked set of k winning alternatives, or an ordered partition of alternatives. We define three classes...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید