Let A ∈ Ωn be doubly-stochastic n × n matrix. Alexander Schrijver proved in 1998 the following remarkable inequality per(Ã) ≥ ∏ 1≤i,j≤n (1−A(i, j)); Ã(i, j) =: A(i, j)(1−A(i, j)), 1 ≤ i, j ≤ n (1) We prove in this paper the following generalization (or just clever reformulation) of (1): For all pairs of n × n matrices (P,Q), where P is nonnegative and Q is doublystochastic log(per(P )) ≥ ∑ 1≤i,...