نتایج جستجو برای: double roman domination
تعداد نتایج: 261474 فیلتر نتایج به سال:
Let G = (V,E) be a graph and f be a function f : V → {0, 1, 2}. A vertex u with f(u) = 0 is said to be undefended with respect to f , if it is not adjacent to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the function f ′ : V → {0, 1, 2} defined by f ′ (u) = 1, f ′ (v) = f...
A Roman dominating function of a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. Let G be a connected n-vertex graph. We prove that γR(G) ≤ 4n/5, and we characterize the graphs achieving equality. We obtain sharp upper and lower bounds for γR(...
A double Roman dominating function on a graph G=(V,E) is f:V?{0,1,2,3} satisfying the condition that every vertex u for which f(u)=0 adjacent to at least one assigned 3 or two vertices 2, and with f(u)=1 2 3. The weight of f equals w(f)=?v?Vf(v). domination number ?dR(G) G minimum G. We obtain closed expressions generalized Petersen graphs P(5k,k). It proven ?dR(P(5k,k))=8k k?2,3mod5 8k??dR(P(5...
A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number...
A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...
In this work, we study the signed Roman domination number of the join of graphs. Specially, we determine it for the join of cycles, wheels, fans, and friendship graphs.
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
Let G be a connected graph. A function f : V (G) → {0, 1, 2, 3} is double Roman dominating of if for each v ∈ with f(v) = 0, has two adjacent vertices u and w which f(u) f(w) 2 or an vertex 3, to either 3. The minimum weight ωG(f) P v∈V the domination number G. In this paper, we continue study introduced studied by R.A. Beeler et al. in [2]. First, characterize some numbers small values terms 2...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید