Given a homomorphism of commutative noetherian rings R → S and an S–module N , it is proved that the Gorenstein flat dimension of N over R, when finite, may be computed locally over S. When, in addition, the homomorphism is local and N is finitely generated over S, the Gorenstein flat dimension equals sup {m ∈ Z | Torm(E,N) 6= 0}, where E is the injective hull of the residue field of R. This re...