نتایج جستجو برای: convex data clustering

تعداد نتایج: 2515355  

Journal: :Pattern Recognition Letters 2014
Nuno Fachada Mário A. T. Figueiredo Vitor V. Lopes Rui Costa Martins Agostinho C. Rosa

This paper proposes new clustering criteria for distinguishing Saccharomyces cerevisiae (yeast) strains using their spectrometric signature. These criteria are introduced in an agglomerative hierarchical clustering context, and consist of: (a) minimizing the total volume of clusters, as given by their respective convex hulls; and, (b) minimizing the global variance in cluster directionality. Th...

Journal: :CoRR 2012
Ali Jalali Nathan Srebro

We suggest using the max-norm as a convex surrogate constraint for clustering. We show how this yields a better exact cluster recovery guarantee than previously suggested nuclear-norm relaxation, and study the effectiveness of our method, and other related convex relaxations, compared to other clustering approaches.

2011
Fredrik Lindsten Henrik Ohlsson Lennart Ljung

We present a novel clustering method, SON clustering, formulated as a convex optimization problem. The method is based on over-parameterization and uses a sum-of-norms regularization to control the trade-o between the model t and the number of clusters. Hence, the number of clusters can be automatically adapted to best describe the data, and need not to be speci ed a priori. We apply SON cluste...

Journal: :International journal of data mining and bioinformatics 2015
Anasua Sarkar Ujjwal Maulik

Identification of co-expressed genes is the central goal in microarray gene expression analysis. Point-symmetry-based clustering is an important unsupervised learning technique for recognising symmetrical convex- or non-convex-shaped clusters. To enable fast clustering of large microarray data, we propose a distributed time-efficient scalable approach for point-symmetry-based K-Means algorithm....

2006
Ling Wang Liefeng Bo Licheng Jiao

The K-Means clustering is by far the most widely used method for discovering clusters in data. It has a good performance on the data with compact super-sphere distributions, but tends to fail in the data organized in more complex and unknown shapes. In this paper, we analyze in detail the characteristic property of data clustering and propose a novel dissimilarity measure, named density-sensiti...

2015
Benjamin Hell Marcus A. Magnor

In this paper we present a novel way of combining the process of k-means clustering with image segmentation by introducing a convex regularizer for segmentation-based optimization problems. Instead of separating the clustering process from the core image segmentation algorithm, this regularizer allows the direct incorporation of clustering information in many segmentation algorithms. Besides in...

Journal: :Adv. Data Analysis and Classification 2009
François Bavaud

General clustering deals with weighted objects and fuzzy memberships. We investigate the groupor object-aggregation-invariance properties possessed by the relevant functionals (effective number of groups or objects, centroids, dispersion, mutual object-group information, etc.). The classical squared Euclidean case can be generalized to non-Euclidean distances, as well as to non-linear transform...

2010
Armand Joulin Francis R. Bach Jean Ponce

Dimensionality reduction is commonly used in the setting of multi-label supervised classification to control the learning capacity and to provide a meaningful representation of the data. We introduce a simple forward probabilistic model which is a multinomial extension of reduced rank regression, and show that this model provides a probabilistic interpretation of discriminative clustering metho...

Journal: :CoRR 2015
Jianfeng Wang Shuicheng Yan Yi Yang Mohan S. Kankanhalli Shipeng Li Jingdong Wang

We study how to learn multiple dictionaries from a dataset, and approximate any data point by the sum of the codewords each chosen from the corresponding dictionary. Although theoretically low approximation errors can be achieved by the global solution, an effective solution has not been well studied in practice. To solve the problem, we propose a simple yet effective algorithm Group K-Means. S...

Journal: :international journal of industrial mathematics 2011
a. mostafaee

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید