نتایج جستجو برای: constraint qualification
تعداد نتایج: 85095 فیلتر نتایج به سال:
In this paper, we study necessary optimality conditions for nonsmooth mathematical programs with equilibrium constraints. We first show that, unlike the smooth case, the Mathematical Program with Equilibrium Constraints Linear Independent Constraint Qualification is not a constraint qualification for the strong stationary condition when the objective function is nonsmooth. We argue that the str...
We present a general method, based on conjugate duality, for solving a convex minimization problem without assuming unnecessary topological restrictions on the constraint set. It leads to dual equalities and characterizations of the minimizers without constraint qualification. As an example of application, the Monge-Kantorovich optimal transport problem is solved in great detail. In particular,...
Given a multiobjective optimization problem with the components of the objective function as well as the constraint functions being composed convex functions, we introduce, by using the Fenchel-Moreau conjugate of the functions involved, a suitable dual problem to it. Under a standard constraint qualification and some convexity as well as monotonicity conditions we prove the existence of strong...
Nonsingularity conditions for FB system of reformulating nonlinear second - order cone programming 1
This paper is a counterpart of [2]. Specifically, for a locally optimal solution to the nonlinear second-order cone programming (SOCP), under Robinson’s constraint qualification, we establish the equivalence among the following three conditions: the nonsingularity of Clarke’s Jacobian of Fischer-Burmeister (FB) nonsmooth system for the Karush-Kuhn-Tucker conditions, the strong second-order suff...
This paper is devoted to study the Lipschitzian/Holderian type global error bound for systems of many finitely convex polynomial inequalities over a polyhedral constraint. Firstly, for systems of this type, we show that under a suitable asymtotic qualification condition, the Lipschitzian type global error bound property is equivalent to the Abadie qualification condition, in particular, the Lip...
In this paper we study first order optimality conditions for the class of generalized semi-infinite programming problems (GSIPs). We extend various wellknown constraint qualifications for finite programming problems to GSIPs and analyze the extent to which a corresponding Karush-Kuhn-Tucker (KKT) condition depends on these extensions. It is shown that in general the KKT condition for GSIPs take...
In this paper we consider a mathematical program with second-order cone complementarity constraints (SOCMPCC). The SOCMPCC generalizes the mathematical program with complementarity constraints (MPCC) in replacing the set of nonnegative reals by second-order cones. There are difficulties in applying the classical Karush–Kuhn–Tucker (KKT) condition to the SOCMPCC directly since the usual constrai...
Every local minimizer of a smooth constrained optimization problem satisfies the sequential Approximate Karush-Kuhn-Tucker (AKKT) condition. This optimality condition is used to define the stopping criteria of many practical nonlinear programming algorithms. It is natural to ask for conditions on the constraints under which AKKT implies KKT. These conditions will be called Strict Constraint Qua...
This paper studies solution properties of a parametric variational condition under the constant rank constraint qualification (CRCQ), and properties of its underlying set. We start by showing that if the CRCQ holds at a point in a fixed set, then there exists a one-to-one correspondence between the collection of nonempty faces of the normal cone to the set at that point and the collection of ac...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید