نتایج جستجو برای: conformal invariant
تعداد نتایج: 97025 فیلتر نتایج به سال:
Appreciation of stochastic Loewner evolution (SLE_{kappa}) , as a powerful tool to check for conformal invariant properties of geometrical features of critical systems has been rising. In this paper we use this method to check conformal invariance in sandpile models. Avalanche frontiers in Abelian sandpile model are numerically shown to be conformally invariant and can be described by SLE with ...
We show that the grading of fields by conformal weight, when built into the initial group symmetry, provides a discrete, non-central conformal extension of any group containing dilatations. We find a faithful vector representation of the extended conformal group and show that it has a scale-invariant scalar product and satisfies a closed commutator algebra. The commutator algebra contains the i...
Surface parameterization is a fundamental problem in graphics. Conformal surface parameterization is equivalent to finding a Riemannian metric on the surface, such that the metric is conformal to the original metric and induces zero Gaussian curvature for all interior points. Ricci flow is a theoretic tool to compute such a conformal flat metric. This paper introduces an efficient and versatile...
In the perturbative QCD with N c → ∞ the amplitude for the collision of two heavy nuclei is expressed via dipole densities in the nuclei. Coupled equations for these densities are derived in the configuration space. The equations are conformal invariant in absence of external sources. Passing to conformal basis and its possible truncation are discussed.
We analyze the conformal invariance of submanifold observables associated with k-branes in the AdS/CFT correspondence. For odd k, the resulting observables are conformally invariant, and for even k, they transform with a conformal anomaly that is given by a local expression which we analyze in detail for k = 2.
Our goal is to study quantities in Riemannian geometry which remain invariant under the “conformal change of metrics”–that is, under changes of metrics which stretch the length of vectors but preserve the angles between any pair of vectors. We call such a quantity “conformally invariant”. In conjunction with the study of conformal invariants, we are also interested in studying “conformally cova...
The Lagrangian of Quantum Chromodynamics is invariant under conformal transformations. Although this symmetry is broken by quantum corrections, it has important consequences for strong interactions at short distances and provides one with powerful tools in practical calculations. In this review we give a short exposition of the relevant ideas, techniques and applications of conformal symmetry t...
where B0 is the trace free part of the second fundamental form of X. It was introduced by Willmore in a slightly different but equivalent form for surfaces in E. The functional is invariant under conformal transformation, and it is natural to extend it for submanifolds in conformal N -sphere S = E ∪ {∞}. Willmore conjecture asks if Clifford torus in S is the unique minimizer of W(X) among all i...
We provide a geometric rigidity estimate à la Friesecke-James-Müller for conformal matrices. Namely, we replace SO(n) by a arbitrary compact subset of conformal matrices, bounded away from 0 and invariant under SO(n), and rigid motions by Möbius transformations.
Let f, g : Mn → Rn+d be two immersions of an n-dimensional differentiable manifold into Euclidean space. That g is conformal (isometric) to f means that the metrics induced on Mn by f and g are conformal (isometric). We say that f is conformally (isometrically) rigid if given any other conformal (isometric) immersion g there exists a conformal (isometric) diffeomorphism Υ from an open subset of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید