نتایج جستجو برای: cnt growth
تعداد نتایج: 822406 فیلتر نتایج به سال:
A novel 3D carbon nanotube (CNT) microelectrode was developed through direct growth of CNTs on a gold pin-shaped 3D microelectrode at a low temperature (400 °C) for applications in neural and cardiac recording. With an electroplated Ni catalyst layer covering the entire surface of the pin-shaped structure, CNTs were synthesized on a 3D microelectrode by catalytic thermal chemical vapor depositi...
We report a simple stepped growth process for the synthesis of carbon nanotubes (CNTs) having excellent field emission properties. CNT growth was interrupted in the process. During the interruption, the catalyst was re-activated in-situ. This resulted in enhanced growth of the CNTs after the interruption and a film of CNTs re-grew on top of an existing CNT film at much higher rates. The enhance...
Functional graphene-basedfibers are promising as new types offlexible buildingblocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD gro...
A new method to fabricate the trans-scale structure of the micro-scale bowl and the nano-scale carbon nanotube (CNT) forest is presented. The new method mimics the natural structure of a superhydrophobic surface like a lotus leaf. The robust silicon microstructure (Si microbowl) and the subsequent CVD growth of CNT have successfully combined the nanoscale CNT forest on the Si microbowl for enha...
The widespread potential application of vertically aligned carbon nanotube (CNT) forests have stimulated recent work on large-area chemical vapor deposition growth methods, but improved control of the catalyst particles is needed to overcome limitations to the monodispersity and packing density of the CNTs. In particular, traditional thin-film deposition methods are not ideal due to their vacuu...
Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD ...
Using first-principles calculations, we model the chemical vapor deposition (CVD) growth of carbon nanotubes (CNT) on nanoparticles of late-transition (Ni, Pd, Pt) and coinage (Cu, Ag, Au) metals. The process is analyzed in terms of the binding of mono- and diatomic carbon species, their diffusion pathways, and the stability of the growing CNT. We find that the diffusion pathways can be control...
The material and electrical properties of the CNT single vias and array vias grown by microwave plasma-enhanced chemical vapor deposition were investigated. The diameters of multiwall carbon nanotubes (MWNTs) grown on the bottom electrode of Ta decrease with increasing pretreatment power and substrate temperature while the effects of the growth power and methane flow ratio are insignificant The...
The feasibility of using carbon nanotube (CNT) bundles as the fillers of through silicon vias (TSVs) has been demonstrated. CNT bundles are synthesized directly inside TSVs by thermal chemical vapor deposition (TCVD). The growth of CNTs in vias is found to be highly dependent on the geometric dimensions and arrangement patterns of the vias at atmospheric pressure. The CNT-Si structure is planar...
A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (< 8 nm), good electronic conducting network (inner CNT core and outer carbon layer), and mesoporous structure was prepared by a simple and green one-pot hydrothermal reaction. The utilization of glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید