نتایج جستجو برای: blow up classification
تعداد نتایج: 1374281 فیلتر نتایج به سال:
We study solutions of some supercritical parabolic equations which blow up in finite time but continue to exist globally in the weak sense. We show that the minimal continuation becomes regular immediately after the blow-up time and if it blows up again, it can only do so finitely many times.
We find formulas for the birational maps from a Kummer surface K and its dual K∗ to their common minimal desingularization S . We show how the nodes of K blow up. Then we give a description of the group of linear automorphisms of S . Mathematics Subject Classification (2000). Primary 14J28, 14M15; Secondary 14J50.
This note is devoted to continuity results of the time derivative of the solution to the onedimensional parabolic obstacle problem with variable coefficients. It applies to the smooth fit principle in numerical analysis and in financial mathematics. It relies on various tools for the study of free boundary problems: blow-up method, monotonicity formulae, Liouville’s results. AMS Classification:...
We consider operations that change the size of images, either shrinks or blow-ups. Image processing offers numerous possibilities, put at everyone's disposal with such computer programs as Adobe Photoshop. We consider a different class of operations, aimed at immediate visual awareness, rather than pixel arrays. We demonstrate cases of blow-ups that do not sacrifice apparent resolution. This ap...
The blow-up of solutions for a class of quasilinear reaction-diffusion equations with a gradient term ut = div(a(u)b(x)∇u)+ f (x,u, |∇u|2, t) under nonlinear boundary condition ∂u/∂n + g(u) = 0 are studied. By constructing a new auxiliary function and using Hopf’s maximum principles, we obtain the existence theorems of blow-up solutions, upper bound of blow-up time, and upper estimates of blow-...
The paper studies the finite-time blow-up theory for a class of nonlinear Volterra integro-differential equations. The conditions for the occurrence of finite-time blow-up for nonlinear Volterra integro-differential equations are provided. Moreover, the finite-time blow-up theory for nonlinear partial Volterra integro-differential equations with general kernels is also established using the blo...
In this paper, collocation methods are used for detecting blow-up solutions of nonlinear homogeneous Volterra-Hammerstein integral equations. To do this, we introduce the concept of “blow-up collocation solution” and analyze numerically some blow-up time estimates using collocation methods in particular examples where previous results about existence and uniqueness can be applied. Finally, we d...
Let X be a variety over an algebraically closed field K . Its Nash blow-up is a variety over K with a projective morphism to X , which is an isomorphism over the smooth locus. Roughly speaking, it parametrizes all limits of tangent planes to X (a precise definition is given in §2 below). The Nash blow-up of a singular X is not always smooth but seems, in some sense, to be less singular than X ....
The aim of this paper is to refine some results concerning the blow-up of solutions of the exponential reaction-diffusion equation. We consider solutions that blow-up in finite time, but continue to exist as weak solutions beyond the blow-up time. The main result is that these solutions become regular immediately after the blow-up time. This result improves on that of Fila, Matano and Polácik, ...
We consider the blow-up of solutions for a semilinear reaction diffusion equation with exponential reaction term. It is know that certain solutions that can be continued beyond the blow-up time possess a nonconstant selfsimilar blow-up profile. Our aim is to find the final time blow-up profile for such solutions. The proof is based on general ideas using semigroup estimates. The same approach w...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید