نتایج جستجو برای: biholomorphic mapping
تعداد نتایج: 198631 فیلتر نتایج به سال:
Any Kähler metric on the ball which is strongly asymptotic to complex hyperbolic space and whose scalar curvature is no less than the one of the complex hyperbolic space must be isometrically biholomorphic to it. This result has been known for some time in odd complex dimension and we provide here a proof in even dimension.
We show that biholomorphic automorphisms of a real analytic hypersurface in I C can be considered as (pointwise) Lie symmetries of a holomorphic completely overdetermined involutive second order PDE system defining its Segre family. Using the classical S.Lie method we obtain a complete description of infinitesimal symmetries of such a system and give a new proof of some well known results of CR...
Let F be an automorphism of C which has an attracting fixed point. It is well known that the basin of attraction is biholomorphically equivalent to C. We will show that the basin of attraction of a sequence of automorphisms f1, f2, . . . is also biholomorphic to C if every fn is a small perturbation of the original map F .
In this note we provide a proof of the following: Any compact KRS with positive bisectional curvature is biholomorphic to the complex projective space. As a corollary, we obtain an alternative proof of the Frankel conjecture by using the Kähler-Ricci flow. The purpose of this note is to give a proof of the following theorem, which does not rely on the previous solutions of Frankel conjecture: T...
Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$ where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید