نتایج جستجو برای: bayesian estimation
تعداد نتایج: 332744 فیلتر نتایج به سال:
A fairly general class of Bayesian ”large-error” lower bounds of the Weiss-Weinstein family, essentially free from regularity conditions on the probability density functions support, and for which a limiting form yields a generalized Bayesian Cramér-Rao bound (BCRB), is introduced. In a large number of cases, the generalized BCRB appears to be the Bobrovsky-Mayer-Wolf-Zakai bound (BMZB). Intere...
Estimation of mixed Weibull distribution by maximum likelihood estimation and other methods is frequently difficult due to unstable estimates arising from limited data. Bayesian techniques can stabilize these estimates through the priors, but there is no closed-form conjugate family for the Weibull distribution. This paper reduces the number of numeric integrations required for using Bayesian e...
This work discuses a novel algorithm for joint sparse estimation of superimposed signals and their parameters. The proposed method is based on two concepts: a variational Bayesian version of the incremental sparse Bayesian learning (SBL)– fast variational SBL – and a variational Bayesian approach for parameter estimation of superimposed signal models. Both schemes estimate the unknown parameter...
هدف این تحقیق تحلیل تأثیر مشارکت در بودجهبندی بر نگرشهای شغلی و عملکرد مدیران تربیت بدنی دانشگاهها بود. روش تحقیق توصیفی، از لحاظ روابط بین متغیرها، از نوع همبستگی و به لحاظ هدف، از نوع تحقیقات کاربردی و روش جمع آوری اطلاعات میدانی بود. جامعۀ آماری این پژوهش مدیران تربیت بدنی دانشگاههای دولتی وابسته به وزارت علوم، تحقیقات و فناوری بودند. حجم نمونه برابر با کل جامعه و به صورت کل شمار تعیین ش...
ayesian estimation is a framework for the formulation of statistical inference problems. In the prediction or estimation of a random process from a related observation signal, the Bayesian philosophy is based on combining the evidence contained in the signal with prior knowledge of the probability distribution of the process. Bayesian methodology includes the classical estimators such as maximu...
Estimating motion in scenes containing multiple moving objects remains a diicult problem in computer vision yet is solved eeortlessly by humans. In this thesis we present a computational investigation of this astonishing performance in human vision. The method we use throughout is to formulate a small number of assumptions and see the extent to which the optimal interpretation given these assum...
In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...
A Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید