نتایج جستجو برای: asymmetric nanopores
تعداد نتایج: 68101 فیلتر نتایج به سال:
Single nanometre-sized pores (nanopores) embedded in an insulating membrane are an exciting new class of nanosensors for rapid electrical detection and characterization of biomolecules. Notable examples include alpha-hemolysin protein nanopores in lipid membranes and solid-state nanopores in Si3N4. Here we report a new technique for fabricating silicon oxide nanopores with single-nanometre prec...
We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude l...
The diffusion-influenced translocation behavior of individual nanoparticles upon passage through a conical nanopore has been elucidated by using a pressure-reversal, resistive-pulse technique, as reported by Lan and White in this issue of ACS Nano. We outline here some recent progress in conical nanopore analysis, and we present some prospects for future developments. Compared to cylindrical na...
Both protein and solid-state nanopores are under intense investigation for the analysis of nucleic acids. A crucial advantage of protein nanopores is that site-directed mutagenesis permits precise tuning of their properties. Here, by augmenting the internal positive charge within the alpha-hemolysin pore and varying its distribution, we increase the frequency of translocation of a 92-nt single-...
Solid-state nanopores have emerged as a versatile tool for the characterization of single biomolecules such as nucleic acids and proteins. However, the creation of a nanopore in a thin insulating membrane remains challenging. Fabrication methods involving specialized focused electron beam systems can produce well-defined nanopores, but yield of reliable and low-noise nanopores in commercially a...
We study translocations of gold nanoparticles and nanorods through silicon nitride nanopores and present a method for determining the surface charge of nanorods from the magnitude of the ionic current change as nanorods pass through the pore. Positively charged nanorods and spherical nanoparticles with average diameters 10 nm and average nanorod lengths between 44 and 65 nm were translocated th...
Recent work on protein nanopores indicates that single molecule characterization (including DNA sequencing) is possible when the length of the nanopore constriction is about a nanometer. Solid-state nanopores offer advantages in stability and tunability, but a scalable method for creating nanometer-thin solid-state pores has yet to be demonstrated. Here we demonstrate that solid-state nanopores...
By combining hydraulic pressure with ultrathin and 2D nanopores we demonstrate how can support wetting of nanopores, as well induced fluid flow be used to identify eliminate artifacts.
Metal-organic polyhedra (MOPs) have been incorporated into silica nanopores for the first time. Three MOPs with identical geometries but different ligand functionality (namely tert-butyl, hydroxyl, and sulfonic groups) were employed. A typical mesoporous silica, SBA-15, with a two-dimensional hexagonal pore regularity was used as the host. In comparison with bulk MOPs, which prefer to aggregate...
Solid-state nanopores have been extensively investigated due to many biological engineering and scientific applications, such as for rapid electrical detection and analysis of biopolymers, powerful DNA detection and genome sequencing technology [1-2]. Herein, we demonstrate that faceted nanopores with various shapes can be successfully fabricated in magnesium via focused electron beam (e-beam) ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید