نتایج جستجو برای: aluthge transform self adjoint operators unitarily invariant norm
تعداد نتایج: 836649 فیلتر نتایج به سال:
Abstract. We consider functions f(A,B) of noncommuting self-adjoint operators A and B that can be defined in terms of double operator integrals. We prove that if f belongs to the Besov class B ∞,1 (R), then we have the following Lipschitz type estimate in the trace norm: ‖f(A1, B1)− f(A2, B2)‖S1 ≤ const(‖A1 −A2‖S1 + ‖B1 −B2‖S1). However, the condition f ∈ B ∞,1 (R) does not imply the Lipschitz ...
In this tutorial we collect facts from the theory of self-adjoint operators, mostly with a view of what is relevant for applications in mathematical quantum mechanics, in particular for solving the Schrödinger equation. Specific topics include the spectral theorem and functional calculus for self-adjoint operators, Stone’s Theorem, Laplacians and Fourier transform, Duhamel’s formula and Dyson s...
Let M n (F) denote the space of matrices over the eld F. Given A2 M n (F) deene jAj (A A) 1=2 and U(A) AjAj ?1 assuming A is nonsingular. Let 1 (A) 2 (A) n (A) 0 denote the ordered singular values of A. We obtain majorization results relating the singular values of U(A + A) ? U(A) and those of A and A. In particular we show that if A; A2 M n (R) and 1 ((A) < n (A) then for any unitarily invaria...
We prove an approximate spectral theorem for non-self-adjoint operators and investigate its applications to second order differential operators in the semi-classical limit. This leads to the construction of a twisted FBI transform. We also investigate the connections between pseudospectra and boundary conditions in the semi-classical limit.
We introduce and study a class of analytic difference operators admitting reflectionless eigenfunctions. Our construction of the class is patterned after the Inverse Scattering Transform for the reflectionless self-adjoint Schrödinger and Jacobi operators corresponding to KdV and Toda lattice solitons.
We prove an approximate spectral theorem for non-self-adjoint operators and investigate its applications to second order differential operators in the semi-classical limit. This leads to the construction of a twisted FBI transform. We also investigate the connections between pseudospectra and boundary conditions in the semi-classical limit. AMS subject classification numbers: 81Q20, 47Axx, 34Lxx.
On the half line 0; 1) we study rst order diierential operators of the form B 1 i d dx + Q(x); where B := B 1 0 0 ?B 2 ; B 1 ; B 2 2 M(n; C) are self{adjoint positive deenite matrices and Q : R + ! M(2n; C); R + := 0; 1); is a continuous self{adjoint oo{diagonal matrix function. We determine the self{adjoint boundary conditions for these operators. We prove that for each such boundary value pro...
On the half line 0; 1) we study rst order diierential operators of the form B 1 i d dx + Q(x); where B := B 1 0 0 ?B 2 ; B 1 ; B 2 2 M(n; C) are self{adjoint positive deenite matrices and Q : R + ! M(2n; C); R + := 0; 1); is a continuous self{adjoint oo{diagonal matrix function. We determine the self{adjoint boundary conditions for these operators. We prove that for each such boundary value pro...
In this paper, we find explicit solution to the operator equation $TXS^* -SX^*T^*=A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $T,S$ have closed ranges and $S$ is a self adjoint operator.
We provide, by a resolvent Krĕın-like formula, all selfadjoint extensions of the symmetric operator S obtained by restricting the self-adjoint operator A : D(A) ⊆ H → H to the dense, closed with respect to the graph norm, subspace N ⊂ D(A). Neither the knowledge of S∗ nor of the deficiency spaces of S is required. Typically A is a differential operator and N is the kernel of some trace (restric...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید