Suppose $c_1,\ldots,c_{n+k}$ are real numbers, $\{a_1,\ldots,a_{n+k}\}\!\subset\!\mathbb{R}^n$ is a set of points not all lying in the same affine hyperplane, $y\!\in\!\mathbb{R}^n$, $a_j\cdot y$ denotes the standard real inner product of $a_j$ and $y$, and we set $g(y)\!:=\!\sum^{n+k}_{j=1} c_j e^{a_j\cdot y}$. We prove that, for generic $c_j$, the number of connected components of the real ze...