نتایج جستجو برای: a principal component analysis pca also known as empirical orthogonal function

تعداد نتایج: 14888516  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه رازی - دانشکده علوم 1390

چکیده در این پژوهش منشاء خزندگان را مورد بررسی قرار داده، خانواده های سوسماران را در ایران معرفی نموده و ویژگی های آنها را ذکر کرده ایم، علاوه بر این نکات، اهمیت تغییرات در وضعیت سیستماتیک mabuya (sensu lato) را بررسی کردیم. خانواده scincidae را از نظر فیلوژنی، رده بندی و همچنین جنس های آن را، مرور کرده ایم. جنس trachylepis fitzinger, 1843 که هدف اصلی پژوهش حاضر است در ایران دارای سه گونه می ب...

Amalnick , M.S., Azadeh , M.A. , Omrani , H.,

 In this paper, a comprehensive approach for performance assessment and ranking of the electricity distribution companies is presented. In this approach, in order to obtain exact ranks of the electricity distribution companies, Data Envelopment Analysis (DEA) as a non-parametric model and Corrected Ordinary Least Squares (COLS) as a parametric model are combined by Principal Component Analysis ...

Journal: :تولید گیاهان زراعی 0
سید ابراهیم سیفتی دانشگاه علوم کشاورزی و منابع طبیعی گرگان سیده ساناز رمضان پور دانشگاه علوم کشاورزی و منابع طبیعی گرگان حسن سلطانلو دانشگاه علوم کشاورزی و منابع طبیعی گرگان معصومه صالحی مرکز ملی تحقیقات شوری یزد نیازعلی سپهوند موسسه تحقیقات اصلاح و تهیه نهال و بذر کرج

background and objectives: quinoa (chenopodium quinoa willd.) is a member of amaranthaceae family that originated in the andean region in bolivia, chile and peru five thousands of years and so it has a tiny and round seeds. quinoa in different combinations of food used as food, as well as how to cook like rice grains and known as the inca rice in the south american countries. the high nutrition...

2009
Hervé Abdi Lynne J. Williams

Principal component analysis (PCA) is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and to display the pattern of similarity of the observations a...

Journal: :فیزیک زمین و فضا 0
سعیده همت پور کارشناس ارشد ژئو فیزیک، دانشکده علوم، دانشگاه آزاد اسلامی واحد تهران شمال حسین هاشمی استادیار، گروه فیزیک زمین، مؤسسة ژئوفیزیک دانشگاه تهران

optimal attributes are useful in interpretation of seismic data. two proposed methods are presented in this paper for finding optimal attributes. regularized discriminate analysis(rda) is based on 2 parameters ë, ? which called regularization parameter. the other method is principal component analysi s(pca).in this paper gas chimney detection is defined as the subject of study for ranking relev...

2018
Dachuan Chen Per A. Mykland Lan Zhang

We develop a principal component analysis (PCA) for high frequency data. As in Northern fairly tales, there are trolls waiting for the explorer. The first three trolls are market microstructure noise, asynchronous sampling times, and edge effects in estimators. To get around these, a robust estimator of the spot covariance matrix is developed based on the Smoothed TSRV (Mykland et al. (2017)). ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده ادبیات و علوم انسانی 1391

why some learners are willing to communicate in english, concurrently others are not, has been an intensive investigation in l2 education. willingness to communicate (wtc) proposed as initiating to communicate while given a choice has recently played a crucial role in l2 learning. it was hypothesized that wtc would be associated with language learning orientations (llos) as well as social suppo...

2008
Ying Cui Jennifer G. Dy

This paper presents a feature selection method based on the popular transformation approach: principal component analysis (PCA). It is popular because it finds the optimal solution to several objective functions (including maximum variance and minimum sum-squared-error), and also because it provides an orthogonal basis solution. However, PCA as a dimensionality reduction algorithm do not explic...

2007
Joel L. Horowitz

In functional linear regression, the slope “parameter” is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an illposed problem and has points of contact with a range of methodologies, including statistical smoothing and deconvolution. The standard approach to estimating the slope function is based explicitly o...

2008
Hung-Shin Lee Berlin Chen

Linear discriminant analysis (LDA) can be viewed as a twostage procedure geometrically. The first stage conducts an orthogonal and whitening transformation of the variables. The second stage involves a principal component analysis (PCA) on the transformed class means, which is intended to maximize the class separability along the principal axes. In this paper, we demonstrate that the second sta...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید