The existence of a connected 12-regular {K4,K2,2,2}-ultrahomogeneous graph G is established, (i.e. each isomorphism between two copies of K4 or K2,2,2 in G extends to an automorphism of G), with the 42 ordered lines of the Fano plane taken as vertices. This graph G can be expressed in a unique way both as the edge-disjoint union of 42 induced copies of K4 and as the edge-disjoint union of 21 in...