نتایج جستجو برای: یادگیری شبکه عصبی
تعداد نتایج: 60481 فیلتر نتایج به سال:
شبکههای عصبی چند لایه پیش خور از دیرباز به طور وسیعی مورد توجه محققان بوده است. این شبکهها علیرغم موفقیت چشمگیر در برقراری ارتباط بین ورودی و خروجی، دارای چندین نقطه ضعف بودهاند. به عنوان مثال زمان آموزش این شبکهها نسبتاً طولانی است و گاهی ممکن است این شبکهها آموزش نبینند. دلیل طولانی بودن زمان آموزش را میتوان به انتخاب نامناسب پارامترهای شبکه نسبت داد. روش به دست آوردن پارامترهای وزن وب...
در دهههای اخیر به دلیل افزایش بیرویه برداشت از منابع آب سطحی و زیرزمینی، جلوگیری از ورود منابع آب سطحی به دریاچه ارومیه و همچنین تغییرات اقلیمی، سطح آب دریاچه ارومیه کاهش یافته و سبب ایجاد بحران آبی و زیست محیطی در منطقه گردیده است. بنابراین، مدلسازی نوسانات سطح آب دریاچه ارومیه برای برنامهریزی و مدیریت منابع آب آن ضروری میباشد. هدف از این تحقیق پیشبینی نوسانات سطح آب دریاچه ارومیه برای ی...
در کشاورزی امروزی، نقش گلخانه به عنوان ابزاری برای افزایش کمیت و کیفیت محصول، دارای اهمیت فراوان میباشد. شرایط داخلی گلخانه به برخی عوامل بیرونی وابسته است که بهطور معمول پیشبینی دقیق آنها به سادگی امکان پذیر نیست. هدف از اجرای این تحقیق، تخمین دمای هوای داخل گلخانه در حالتهای بدون تهویه و با استفاده از سامانهی سرماش تبخیری با روش شبکه عصبی مصنوعی و مدل رگرسیونی است. از برخی عوامل مانند ...
تحقیق حاضر به بررسی عوامل تعیین کننده نسبت پرداخت سود سهام همچنین مقایسه قدرت پیش بینی شبکه های عصبی و مدل رگرسیون حداقل مربعات به منظور برآورد نسبت پرداخت سود سهام می پردازد. هدف این تحقیق شناسایی و تبیین عوامل تعیین کننده نسبت پرداخت سود سهام، ارزیابی درجه اهمیت این عوامل و ارائه یک مدل توصیفی از عوامل تعیین کننده نسبت پرداخت سود سهام می باشد. از میان تئوری ها و نظریه های متفاوتی که از سوی مح...
مقدمه: تغییرات فصلی و روزانه مرگ و میر ارتباط مستقیمی با دما دارد. در این تحقیق دادههای روزانه مرگ و میر و پارامتر دما طی دوره 2005 -2002 مورد استفاده قرار گرفته است. روش کار: برای پردازش دادهها روشهای تعیین ضریب همبستگی پیرسون، رگرسیون خطی ساده، رگرسیون چندجملهای و شبکههای عصبی مصنوعی به عنوان یک روش غیر خطی ( ANN )استفاده شده است. یافتهها: نتایج حاصل از کاربرد و تحلیل همبستگی پیرسون نشا...
به دلیل نواقص موجود در روش های پیشین محاسبه بزرگای زلزله، شبکه عصبی به عنوان یک روش جدید برای این منظور آزمایش می گردد. در این مقاله نوعی شبکه عصبی با نام پرسپترون چندلایه برای پیش بینی بزرگای گشتاوری زلزله مورد استفاده قرار گرفته است. شبکه عصبی پرسپترون شامل سه لایه اصلی با نام های لایه ورودی، لایه پنهان و لایه خروجی است. ورودی های این شبکه شش متغیر مربوط به مکان و زمان وقوع زلزله و همچنین مشخ...
در این مقاله، یک سیستم پیوندگرای فازی جدید برای یادگیری آنلاین تدریجی و کشف دانش، به نام شبکه عصبی فازی خودکار مبتنی بر جمعیت (pafunn) با جزئیات نشان داده است. pafunn از طریق یادگیری تدریجی تکامل پیدا می کند. اتصالات و نرون های جدید، بر اساس جمعیت نمونه ها ایجاد می شوند، در حالی که در سیستمی عمل می کنند که مزیت کنترل تعدادی از نرون های درگیر در آن را داشته و منجر به پیچیدگی کمتر شبکه می شوند. ا...
در این پروژه روش ارتباط کمی ساختار- ویژگی (qspr) برای مدل سازی و پیش بینی مقادیر جابجایی شیمیایی کربن-13 یک سری 113 تایی از مشتقات بنزن برای چهار موقعیت ایپسو، اورتو، متا و پارا بکار برده شده است. ابتدا تعداد زیادی از توصیف کننده های مولکولی با استفاده از نرم افزارهای هایپرکم، موپک، دراگون محاسبه شد. همچنین تعدادی توصیف کننده ساده از روی ساختار ترکیبات بدست آمد. سپس تعداد مناسبی از این توصیف ک...
در این مقاله، یک روش پیش تعلیم دوسویه برای همگرا نمودن تعلیم شبکه های عصبی عمیق با یادگیری دیگرانجمنی ارائه شده است. تعلیم این شبکه ها به دلیل مواجه بودن با تعداد بالای کمینه های موضعی اغلب همگرا نمی گردد. این در حالی است که با مقداردهی اولیه مناسب وزن های شبکه، می توان از بسیاری از کمینه های موضعی اجتناب نمود. روش پیش تعلیم لایه به لایه دوسویه روشی سریع و کارا می باشد که در یک مسیر دوسویه به ط...
شبکه ی عصبی مصنوعی شبیه سازی ساده ای از مکانیزم سیستم عصبی بیولوژیکی است که به دلیل قدرت یادگیری مسایل مختلف، تنها بر پایه ی آموزش از طریق ارایه ی الگوهای نمونه ی ورودی-خروجی، بسیار مورد توجه قرار گرفته است. یافتن وزن های مناسب شبکه ی عصبی مصنوعی مهم ترین عامل در یادگیری آن محسوب می شود. الگوریتم پس انتشار خطا به عنوان الگوریتم استاندارد شبکه ی عصبی مصنوعی بسیار کارآمد است، اما به دلیل ماهیت مب...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید